Skip to main content
Log in

The Weyl principle on the Finsler frontier

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Any Riemannian manifold has a canonical collection of valuations (finitely additive measures) attached to it, known as the intrinsic volumes or Lipschitz–Killing valuations. They date back to the remarkable discovery of H. Weyl that the coefficients of the tube volume polynomial are intrinsic invariants of the metric. As a consequence, the intrinsic volumes behave naturally under isometric immersions. This phenomenon, subsequently observed in a number of different geometric settings, is commonly referred to as the Weyl principle. In general normed spaces, the Holmes–Thompson intrinsic volumes naturally extend the Euclidean intrinsic volumes. The purpose of this note is to investigate the applicability of the Weyl principle to Finsler manifolds. We show that while in general the Weyl principle fails, a weak form of the principle unexpectedly persists in certain settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alesker, S.: On P. McMullen’s conjecture on translation invariant valuations. Adv. Math. 155(2), 239–263 (2000)

    Article  MathSciNet  Google Scholar 

  2. Alesker, S.: Valuations on manifolds and integral geometry. Geom. Funct. Anal. 20(5), 1073–1143 (2010)

    Article  MathSciNet  Google Scholar 

  3. Alesker, S.: Theory of valuations on manifolds. IV. New properties of the multiplicative structure, Geometric aspects of functional analysis. Lecture Notes in Mathemathics, vol. 1910, pp. 1–44. Springer, Berlin (2007)

  4. Alesker, S., Bernig, A.: The product on smooth and generalized valuations. Am. J. Math. 134(2), 507–560 (2012)

    Article  MathSciNet  Google Scholar 

  5. Alesker, S., Bernstein, J.: Range characterization of the cosine transform on higher Grassmannians. Adv. Math. 184(2), 367–379 (2004)

    Article  MathSciNet  Google Scholar 

  6. Alesker, S., Fu, J.H.G.: Integral geometry and valuations, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Basel (2014). Lectures from the Advanced Course on Integral Geometry and Valuation Theory held at the Centre de Recerca Matemàtica (CRM), Barcelona, September 6–10, 2010; Edited by Eduardo Gallego and Gil Solanes

  7. Alesker, S.: Introduction to the theory of valuations, CBMS Regional Conference Series in Mathematics, vol. 126, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2018)

  8. Álvarez Paiva, J. C.: Some problems on Finsler geometry. In: Handbook of Differential Geometry, vol. II, pp. 1–33, Elsevier/North-Holland, Amsterdam (2006)

  9. Álvarez Paiva, J.C., Fernandes, E.: Crofton formulas in projective Finsler spaces. Electron. Res. Announc. Am. Math. Soc. 4, 91–100 (1998)

    Article  MathSciNet  Google Scholar 

  10. Álvarez Paiva, J.C., Fernandes, E.: Gelfand transforms and Crofton formulas. Sel. Math. (N.S.) 13(3), 369–390 (2007)

    Article  MathSciNet  Google Scholar 

  11. Álvarez Paiva, J. C., Thompson, A. C.: Volumes on normed and Finsler spaces, A sampler of Riemann–Finsler geometry, Math. Sci. Res. Inst. Publ., vol. 50, pp. 1–48. Cambridge University Press, Cambridge (2004)

  12. Bernig, A.: Valuations with Crofton formula and Finsler geometry. Adv. Math. 210(2), 733–753 (2007)

    Article  MathSciNet  Google Scholar 

  13. Bernig, A., Bröcker, L.: Valuations on manifolds and Rumin cohomology. J. Differ. Geom. 75(3), 433–457 (2007)

    Article  MathSciNet  Google Scholar 

  14. Bernig, A., Faifman, D., Solanes, G.: Curvature Measures of Pseudo-Riemannian manifolds, preprint

  15. Bernig, A., Fu, J.H.G., Solanes, G.: Integral geometry of complex space forms. Geom. Funct. Anal. 24(2), 403–492 (2014). https://doi.org/10.1007/s00039-014-0251-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Burago, D., Ivanov, S.: Isometric embeddings of Finsler manifolds. Algebra Anal. 5(1), 179–192 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Burago, D., Ivanov, S.: On intrinsic geometry of surfaces in normed spaces. Geom. Topol. 15(4), 2275–2298 (2011)

    Article  MathSciNet  Google Scholar 

  18. Faifman, D.: Contact integral geometry and the Heisenberg algebra

  19. Fu, J.H.G.: Curvature measures of subanalytic sets. Am. J. Math. 116(4), 819–880 (1994)

    Article  MathSciNet  Google Scholar 

  20. Fu, J.H.G.: Integral geometric regularity. In: Tensor Valuations and Their Applications in Stochastic Geometry and Imaging, Lecture Notes in Mathematics, vol. 2177, pp. 261–299. Springer, Cham (2017)

  21. Fu, J.H.G., Pokorný, D., Rataj, J.: Kinematic formulas for sets defined by differences of convex functions. Adv. Math. 311, 796–832 (2017)

    Article  MathSciNet  Google Scholar 

  22. Garret, P.: Harmonic analysis on spheres, II. http://www-users.math.umn.edu/~garrett/m/mfms/notes_c/spheres_II.pdf

  23. Golubitsky, M., Guillemin, V.: Stable mappings and their singularities. Graduate Texts in Mathematics, vol. 14, Springer, New York, p. x+209 (1973)

  24. Groemer, H.: Geometric applications of Fourier series and spherical harmonics. In: Encyclopedia of Mathematics and Its Applications, vol. 61. Cambridge University Press, Cambridge (1996)

  25. Gu, Č-H.: Imbedding of a Finsler space in a Minkowski space. Acta Math. Sin. 6, 215–232 (1956)

    MathSciNet  Google Scholar 

  26. Hörmander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics, Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin (91m:35001a)]. Springer, Berlin (2003). https://doi.org/10.1007/978-3-642-61497-2

  27. Ivanov, S.: Monochromatic Finsler surfaces and a local ellipsoid characterization. Proc. Am. Math. Soc. 146(4), 1741–1755 (2018)

    Article  MathSciNet  Google Scholar 

  28. Klain, D.A.: A short proof of Hadwiger’s characterization theorem. Mathematika 42(2), 329–339 (1995)

    Article  MathSciNet  Google Scholar 

  29. Ludwig, M.: Minkowski areas and valuations. J. Differ. Geom. 86(1), 133–161 (2010)

    Article  MathSciNet  Google Scholar 

  30. Rubin, B.: Inversion and characterization of the hemispherical transform. J. Anal. Math. 77, 105–128 (1999)

    Article  MathSciNet  Google Scholar 

  31. Rumin, M.: Formes différentielles sur les variétés de contact. J. Differ. Geom. 39(2), 281–330 (1994)

    Article  MathSciNet  Google Scholar 

  32. Schneider, R.: Convex bodies: the Brunn–Minkowski theory. In: Encyclopedia of Mathematics and its Applications, vol. 151, 2nd expanded edition. Cambridge University Press, Cambridge (2014)

  33. Schneider, R., Wieacker, J.A.: Integral geometry in Minkowski spaces. Adv. Math. 129(2), 222–260 (1997)

    Article  MathSciNet  Google Scholar 

  34. Shen, Z.: On Finsler geometry of submanifolds. Math. Ann. 311(3), 549–576 (1998)

    Article  MathSciNet  Google Scholar 

  35. Solanes, G., Wannerer, T.: Integral geometry of exceptional spheres. J. Differ. Geom. in press. arXiv:1708.05861 [math.DG]

  36. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. IV, 2nd edn. Publish or Perish, Inc., Wilmington (1979)

  37. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. V, 2nd edn. Publish or Perish, Inc., Wilmington (1979)

  38. Thompson, A.C.: Minkowski geometry. In: Encyclopedia of Mathematics and Its Applications, vol. 63. Cambridge University Press, Cambridge (1996)

  39. Weyl, H.: On the volume of tubes. Am. J. Math. 61(2), 461–472 (1939)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Joe Fu for sparking our interest in this problem through his many inspiring talks, and Semyon Alesker for very helpful comments on the first draft. This work got started while TW was visiting the University of Toronto, during DF’s term as Coxeter Assistant Professor there, and completed during DF’s term as a CRM-ISM postdoctoral fellow in Université de Montréal, McGill and Concordia. The contributions of those institutions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Faifman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dmitry Faifman was partially supported by an NSERC Discovery Grant.

Thomas Wannerer supported by DFG Grant WA 3510/1-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faifman, D., Wannerer, T. The Weyl principle on the Finsler frontier. Sel. Math. New Ser. 27, 27 (2021). https://doi.org/10.1007/s00029-021-00640-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00640-7

Keywords

Mathematics Subject Classification

Navigation