Skip to main content
Log in

Bott–Samelson atlases, total positivity, and Poisson structures on some homogeneous spaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let G be a connected and simply connected complex semisimple Lie group. For a collection of homogeneous G-spaces G/Q, we construct a finite atlas \({{\mathcal {A}}}_{{\scriptscriptstyle BS}}(G/Q)\) on G/Q, called the Bott–Samelson atlas, and we prove that all of its coordinate functions are positive with respect to the Lusztig positive structure on G/Q. We also show that the standard Poisson structure \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}\) on G/Q is presented, in each of the coordinate charts of \({{\mathcal {A}}}_{{\scriptscriptstyle BS}}(G/Q)\), as a symmetric Poisson CGL extension (or a certain localization thereof) in the sense of Goodearl–Yakimov, making \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}, {{\mathcal {A}}}_{{\scriptscriptstyle BS}}(G/Q))\) into a Poisson–Ore variety. In addition, all coordinate functions in the Bott–Samelson atlas are shown to have complete Hamiltonian flows with respect to the Poisson structure \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}\). Examples of G/Q include G itself, G/T, G/B, and G/N, where \(T \subset G\) is a maximal torus, \(B \subset G\) a Borel subgroup, and N the uniradical of B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The word “standard” here refers to the fact that the Poisson structure \(\pi _{\mathrm{st}}\) is defined using the standard classical r-matrix on the Lie algebra of G, as opposed to the more general Belavin–Drinfeld ones [4].

References

  1. Alekseev, A., Berenstein, A., Hoffman, B., Li, Y.: Poisson structures and potentials. In: Kac, V., Papov, V. (eds.) Lie Groups, Geometry, and Representation Theory, Progress in Mathematics, vol. 326, pp. 1–40. Springer, Berlin (2018)

    Chapter  Google Scholar 

  2. Alekseev, A., Berenstein, A., Hoffman, B., Li, Y.: Langlands duality and Poisson–Lie duality via cluster theory and tropicalization. arXiv:1806.04104

  3. Arnold, V.: Ordinary Differential Equations, translation from Russian by Roger Cooke. Springer, Berlin (1992)

  4. Belavin, A., Drinfeld, V.: Triangle equations and simple Lie algebras. Soviet Sci. Rev. Sect. C: Math. Phys. Rev. 4, 93–165 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Berenstein, A., Zelevinsky, A.: Total positivity in Schubert varieties. Comment. Math. Helv. 72, 128–166 (1997)

    Article  MathSciNet  Google Scholar 

  6. Berenstein, A., Fomin, S., Zelevinsky, A.: Parametrizations of canonical bases and totally positive matrices. Adv. Math. 122, 49–149 (1996)

    Article  MathSciNet  Google Scholar 

  7. Berenstein, A., Kazhdan, D.: Geometric and unipotent crystals II: from unipotent bicrystals to crystal bases. In: Quantum Groups, Contemp. Math., vol. 433, pp. 13–88. Amer. Math. Soc., Providence (2007)

  8. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001)

    Article  MathSciNet  Google Scholar 

  9. Bogomolov, F., Böhning, C.: On uniformly rational varieties. In: Topology, Geometry, Integrable Systems, and Mathematical Physics. Amer. Math. Soc. Transl., vol. 234 (2), pp. 33–48. Amer. Math. Soc., Providence (2014)

  10. Brown, K., Goodearl, K.: Lectures on Algebraic Quantum Groups. Advanced Courses in Mathematics CRM Barcelona. Birkhäuser, Basel (2002)

    Book  Google Scholar 

  11. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Drinfeld, V.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equations. Sov. Math. Dokl. 27(1), 68–71 (1982)

    Google Scholar 

  13. Drinfeld, V., Quantum groups. Proceedings of the International Congress of Mathematicians, 1 (2) (Berkeley, Calif., 1986), pp. 798–820. Amer. Math. Soc., Providence (1987)

  14. Drinfeld, V.: On Poisson homogeneous spaces of Poisson–Lie groups. Theo. Math. Phys. 95, 226–227 (1993)

    Article  MathSciNet  Google Scholar 

  15. Elek, B., Lu, J.-H.: Bott–Samelson varieties and Poisson–Ore extensions. Int. Math. Res. Not. (2019). https://doi.org/10.1093/imrn/rnz127

    Article  Google Scholar 

  16. Etingof, P., Shiffmann, O.: Lectures on Quantum Groups, 2nd edn. International Press, New York (2002)

    Google Scholar 

  17. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. IHES 103, 1–211 (2006)

    Article  Google Scholar 

  18. Fomin, S.: Total positivity and cluster algebras. Proceedings of the ICM. vol. II, pp. 125–145, Hindustan Book Agency, New Delhi (2010)

  19. Fomin, S., Zelevinsky, A.: Double Bruhat cells and total positivity. J. Am. Math. Soc. 12, 335–380 (1999)

    Article  MathSciNet  Google Scholar 

  20. Fomin, S., Zelevinsky, A.: Total positivity: tests and parametrizations. Math. Intell. 22, 23–33 (2000)

    Article  MathSciNet  Google Scholar 

  21. Fomin, S., Zelevinsky, A.: Totally nonnegative and oscillatory elements in semisimple groups. Proc. AMS 128(12), 3749–3759 (2000)

    Article  MathSciNet  Google Scholar 

  22. Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. In: Mathematical Surveys and Monographs. The AMS, 167 (2010)

  23. Goodearl, K., Warfield, R.: An Introduction to Noncommutative Noetherian Rings. London Mathematical Society Student Text, vol. 61, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  24. Goodearl, K., Yakimov, M.: Poisson structures on affine spaces and flag varieties, II, the general case. Trans. Am. Math. Soc. 361(11), 5753–5780 (2009)

    Article  Google Scholar 

  25. Goodearl, K., Yakimov, M.: Quantum cluster algebras and quantum nilpotent algebras. Proc. Natl. Acad. Sci. USA 111(27), 9696–9703 (2014)

    Article  MathSciNet  Google Scholar 

  26. Goodearl, K., Yakimov, M.: The Berenstein-Zelevinsky quantum cluster algebra conjecture. J. Eur. Math. Soc. (JEMS) 22(8), 2453–2509 (2020). https://doi.org/10.4171/JEMS/969

    Article  MathSciNet  MATH  Google Scholar 

  27. Goodearl, K., Yakimov, M.: Quantum cluster algebra structures on quantum nilpotent algebras. Mem. Am. Math. Soc. 247(1169), 5753–5780 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Goodearl, K., Yakimov, M.: Cluster algebras on nilpotent Poisson algebras. arXiv:1801.01963v2

  29. Goodearl, K., Yakimov, M.: Cluster structures on double Bruhat cells (in preparation)

  30. Grothendieck, A.: EGA, IV. Publ. Math. IHES. 32 (1967)

  31. He, X., Knutson, A., Lu, J.-H.: Bruhat atlases (in preparation)

  32. Hodges, T., Levasseur, T.: Primitive ideals of \(C_q[SL(3)]\). Commun. Math. Phys. 156(3), 581–605 (1993)

    Article  Google Scholar 

  33. Hoffmann, T., Kellendonk, J., Kutz, N., Reshetikhin, N.: Factorization dynamics and Coxeter–Toda lattices. Commun. Math. Phys. 212(2), 297–321 (2000)

    Article  MathSciNet  Google Scholar 

  34. Knutson, A., Woo, A., Yong, A.: Singularities of Richardson varieties. Math. Res. Lett. 20(02), 391–400 (2013)

    Article  MathSciNet  Google Scholar 

  35. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MathSciNet  Google Scholar 

  36. Kogan, M., Zelevinsky, A.: On symplectic leaves and integrable systems in standard complex semisimple Poisson Lie groups. Int. Math. Res. Not. 32, 1685–1703 (2002)

    Article  MathSciNet  Google Scholar 

  37. Lu, J.-H.: Cluster open covers of some homogeneous spaces (in preparation)

  38. Lu, J.-H., Mi, Y.: Generalized Bruhat cells and completeness of Hamiltonian flows of Kogan–Zelevinsky integrable systems. In: Kac, V., Papov, V. (eds.) Lie Groups, Geometry, and Representation Theory, Progress in Mathematics, vol. 326, pp. 315–365. Springer, Berlin (2018)

    Chapter  Google Scholar 

  39. Lu, J.-H., Mouquin, V.: Mixed product Poisson structures associated to Poisson Lie groups and Lie bialgebras. Int. Math. Res. Not. 19, 5919–5976 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Lu, J.-H., Mouquin, V.: On the \(T\)-leaves of some Poisson structures related to products of flag varieties. Adv. Math. 306, 1209–1261 (2017)

    Article  MathSciNet  Google Scholar 

  41. Lu, J.-H., Mouquin, V.: Double Bruhat cells and symplectic groupoids. Trans. Groups 23(3), 765–800 (2018)

    Article  MathSciNet  Google Scholar 

  42. Lu, J.-H., Yakimov, M.: Group orbits and regular partitions of Poisson manifolds. Commun. Math. Phys. 283(3), 729–748 (2008)

    Article  MathSciNet  Google Scholar 

  43. Lusztig, G.: Total positivity in reductive groups. In: Lie Theory and Geometry: In Honor of Bertram Kostant, Progr. in Math., vol. 123, pp. 531–568. Birkhäuser, Boston (1994)

  44. Lusztig, G.: Introduction to total positivity. In: Positivity in Lie Theory: Open Problems. de Gruyter Expositions in Mathematics, vol. 26, pp. 133–145. de Gruyter, Berlin (1998)

  45. Lusztig, G.: A survey of total positivity. Milan J. Math. 76, 125–134 (2008)

    Article  MathSciNet  Google Scholar 

  46. Oh, S.: Poisson polynomial rings. Commun. Algebra 34(4), 1265–1277 (2006)

    Article  MathSciNet  Google Scholar 

  47. Yu, S.: On the Knutson–Woo–Yong maps and some Poisson homogeneous spaces. Ph.D. Thesis, the University of Hong Kong (2018)

Download references

Acknowledgements

The earliest motivation for the work in this paper came from discussion with Xuhua He and Allen Knutson on trying to understand the Poisson geometry behind the notion of Bruhat atlas proposed in [31]. We thank the referee for helpful comments. We also thank Yipeng Mi and Yanpeng Li for helpful discussions. The research in this paper was partially supported by the Research Grants Council of the Hong Kong SAR, China (GRF 17304415 and GRF 17307718). A version of Theorem B is contained in the University of Hong Kong Ph.D. Thesis [47] of the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Hua Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Proof of Theorem 5.3 and T-leaves of \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\)

Appendix A. Proof of Theorem 5.3 and T-leaves of \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\)

In this appendix, we first prove Theorem 5.3 which says that for any \(v, w \in W\),

$$\begin{aligned} J^w_{{\scriptscriptstyle B}(v)}: \;\;&\; (wB^-B/B(v), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)}) \longrightarrow \left( {{\mathcal {O}}}^{w_0w^{-1}} \times {{\mathcal {O}}}^{(w, v)}, \; \pi _{1, 2}\right) , \end{aligned}$$
(A.1)
$$\begin{aligned} J^w_{{\scriptscriptstyle N}(v)}: \;\;&\; (wB^-B/N(v), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) \longrightarrow \left( {{\mathcal {O}}}^{w_0w^{-1}} \times {{\mathcal {O}}}^{(w, v)} \times T, \; \pi _{1, 2, 0}\right) \end{aligned}$$
(A.2)

are Poisson isomorphisms, where \(J^w_{{\scriptscriptstyle B}(v)}\) and \(J^w_{{\scriptscriptstyle N}(v)}\) are given in (2.25) and (2.26), and the Poisson structures \(\pi _{1, 2}\) and \(\pi _{1, 2,0}\) are given in (5.2) and (5.3). Here recall that for \(Q = B(v)\) or N(v), \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}\) is the projection to G/Q of the standard Poisson structure \(\pi _{\mathrm{st}}\) on G. In Sect. A.1, we review some facts on the Poisson Lie group \((G, \pi _{\mathrm{st}})\). In Sect. A.2, we prove certain maps involved in the definitions of \(J^w_{{\scriptscriptstyle B}(v)}\) and \(J^w_{{\scriptscriptstyle N}(v)}\) are Poisson, and we use these facts to prove Theorem 5.3 in Sect. A.3. In Sect. A.4, we determine the T-leaves of \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\).

1.1 Some facts on the Poisson Lie group \((G, \pi _{\mathrm{st}})\)

We first recall (see, for example, [16, 39]) that given a Poisson Lie group \((L, \pi )\) and a Poisson manifold \((X, {\pi _{\scriptscriptstyle X}})\), a left action of L on X is said to be Poisson if the action map \((L, \pi ) \times (X, {\pi _{\scriptscriptstyle X}}) \rightarrow (X, {\pi _{\scriptscriptstyle X}})\) is Poisson. A Poisson manifold \((X, {\pi _{\scriptscriptstyle X}})\) is called a Poisson homogeneous space [14] of a Poisson Lie group \((L, \pi )\) if \((X, {\pi _{\scriptscriptstyle X}})\) has a Poisson action by \((L, \pi )\) which is also transitive.

Example A.1

If M is a closed coisotropic subgroup (see Sect. 5.1) of a Poisson Lie group \((L, \pi )\), the action of L on L/M by left translation makes \((L/M, \pi _{{\scriptscriptstyle L}/{\scriptscriptstyle M}})\) a Poisson homogeneous space of \((L, \pi )\), where \(\pi _{{\scriptscriptstyle L}/{\scriptscriptstyle M}}\) is the projection to L/M of the Poisson structure \(\pi \) on L. Note that as \(\pi (e) = 0\), \(\pi _{{\scriptscriptstyle L}/{\scriptscriptstyle M}}\) vanishes at \(e_\cdot M \in L/M\). In general, it is easy to see from the definitions that if \((X, {\pi _{\scriptscriptstyle X}})\) is a Poisson homogeneous space of \((L, \pi )\) and if \(x \in X\) is such that \({\pi _{\scriptscriptstyle X}}(x)=0\), then the stabilizer subgroup \(L_x\) of L at x is a coisotropic subgroup of \((L, \pi )\), and the map

$$\begin{aligned} (L/L_x, \pi _{{\scriptscriptstyle L}/{{\scriptscriptstyle L}}_x}) \longrightarrow (X, {\pi _{\scriptscriptstyle X}})\;\; l \longmapsto lx, \quad l \in L, \end{aligned}$$

is a Poisson isomorphism. \(\square \)

Returning to the Poisson Lie group \((G, \pi _{\mathrm{st}})\), where \(\pi _{\mathrm{st}}\) is given in (4.9), for any \(v \in W\) and \(Q = B(v)\) or N(v), the Poisson manifold \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\) is then a Poisson homogeneous space of \((G, \pi _{\mathrm{st}})\).

We now recall a Drinfeld double of the Poisson Lie group \((G, \pi _{\mathrm{st}})\): associated to the standard quasi-triangular r-matrix \(r_{\mathrm{st}} \in {\mathfrak {g}}\otimes {\mathfrak {g}}\) in (4.8), one has the quasi-triangular r-matrix \(r_{\mathrm{st}}^{(2)}\in ({\mathfrak {g}}\oplus {\mathfrak {g}})^{\otimes 2}\) for the direct product Lie algebra \({\mathfrak {g}}\oplus {\mathfrak {g}}\), given [39, Sect. 6.1] as (see Notation 4.13)

$$\begin{aligned} r_{\mathrm{st}}^{(2)} = (r_{\mathrm{st}}, \; 0) -(0, \, r_{\mathrm{st}}^{21}) - \sum _{q=1}^d (H_q, 0) \wedge (0, H_q) -\sum _{\alpha \in \Delta ^+} \langle \alpha , \alpha \rangle (e_\alpha , 0) \wedge (0, e_{-\alpha }),\qquad \end{aligned}$$
(A.3)

where \(r_{\mathrm{st}}^{21} = \tau (r_{\mathrm{st}})\) with \(\tau (x \otimes y) = y \otimes x\) for \(x, y \in {\mathfrak {g}}\), and for any vector space V and \(u, v \in V\), we use the convention that

$$\begin{aligned} u \wedge v = u\otimes v - v\otimes u \in V \otimes V. \end{aligned}$$

Let \(\Lambda _{\mathrm{st}}^{(2)} \in \wedge ^2 ({\mathfrak {g}}\oplus {\mathfrak {g}})\) be the skew-symmetric part of \(r_{\mathrm{st}}^{(2)}\), and let \(\Pi _{\mathrm{st}}\) be the multiplicative Poisson structure on the product group \(G \times G\) given by

$$\begin{aligned} \Pi _{\mathrm{st}}= \left( r_{\mathrm{st}}^{(2)}\right) ^L - \left( r_{\mathrm{st}}^{(2)}\right) ^R= \left( \Lambda _{\mathrm{st}}^{(2)}\right) ^L- \left( \Lambda _{\mathrm{st}}^{(2)}\right) ^R. \end{aligned}$$
(A.4)

Here, for \(A \in {\mathfrak {g}}^{\otimes k}\), \(A^L\) and \(A^R\) respectively denote the left and right invariant tensor fields on G with value A at the identity of G. It follows from the definitions that

$$\begin{aligned} \Pi _{\mathrm{st}}= (\pi _{\mathrm{st}}, \, 0) + (0, \, \pi _{\mathrm{st}}) + \mu _1 + \mu _2, \end{aligned}$$
(A.5)

where

$$\begin{aligned} \mu _1&= \sum _{q=1}^d (H_q^R, \; 0) \wedge (0, \; H_q^R) +\sum _{\alpha \in \Delta ^+} \langle \alpha , \alpha \rangle (e_\alpha ^R, \, 0) \wedge (0, e_{-\alpha }^R), \end{aligned}$$
(A.6)
$$\begin{aligned} \mu _2&=-\sum _{q=1}^d (H_q^L, \; 0) \wedge (0, \; H_q^L) -\sum _{\alpha \in \Delta ^+} \langle \alpha , \alpha \rangle (e_\alpha ^L, \, 0) \wedge (0, e_{-\alpha }^L). \end{aligned}$$
(A.7)

The Poisson Lie group \((G \times G, \, \Pi _{\mathrm{st}})\) is a Drinfeld double of the Poisson Lie group \((G, \pi _{\mathrm{st}})\) (see, for example, [39, paragraph after Example 6.11]). In particular, the embedding

$$\begin{aligned} (G, \, \pi _{\mathrm{st}}) \hookrightarrow (G \times G, \; \Pi _{\mathrm{st}}), \;\; g \longmapsto (g, g), \quad g \in G, \end{aligned}$$

is Poisson, and the projections \((G \times G, \Pi _{\mathrm{st}}) \rightarrow (G, \pi _{\mathrm{st}})\) to both factors are Poisson.

It follows from (A.5), (A.6) and (A.7) that \(B \times B\) is a coisotropic subgroup of the Poisson Lie group \((G \times G, \, \Pi _{\mathrm{st}})\). Let \(\varpi \) be the projection

$$\begin{aligned} \varpi : \;\; G \times G \longrightarrow (G \times G)/(B \times B) \cong G/B \times G/B, \end{aligned}$$

and let \(\Pi = \varpi (\Pi _{\mathrm{st}})\). It follows from (A.4) and (A.5) that

$$\begin{aligned} \Pi =- \varpi \left( \left( \Lambda _{\mathrm{st}}^{(2)}\right) ^R\right) = (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}, \, 0) + (0, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})+ \varpi (\mu _1). \end{aligned}$$

Let \(G_{\mathrm{diag}} = \{(g, g): g \in G\} \subset G \times G\) and consider the \(G_{\mathrm{diag}}\)-orbits in \(G/B \times G/B\), which are precisely of the form

$$\begin{aligned} G_{\mathrm{diag}} (v) \; {\mathop {=}\limits ^{\mathrm{def}}}\; G_{\mathrm{diag}}(e_\cdot B, \, {\overline{v}}_\cdot B)\subset G/B \times G/B, \quad v \in W. \end{aligned}$$

Note that for \(v \in W\), the stabilizer subgroup of \(G \cong G_{\mathrm{diag}}\) at \((e_\cdot B, {\overline{v}}_\cdot B) \in G/B \times G/B\) is precisely \(B(v) = B \cap {\overline{v}}B {\overline{v}}^{\, -1}\).

Lemma A.2

For each \(v \in W\), \(G_{\mathrm{diag}} (v)\) is a Poisson submanifold of \(G/B \times G/B\) with respect to \(\Pi \), and the G-equivariant map

$$\begin{aligned} (G/B(v), \; \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}}(v)}) \longrightarrow (G_{\mathrm{diag}} (v), \, \Pi ),\;\; g_\cdot B(v) \longmapsto (g_\cdot B, \; g{\overline{v}}_\cdot B), \quad g \in G,\qquad \end{aligned}$$
(A.8)

is a Poisson isomorphism.

Proof

Let \(v \in W\). By [42, Theorem 2.3], \(G_{\mathrm{diag}} (v)\) is a Poisson submanifold of \(G/B \times G/B\) with respect to \(\Pi \), and, as a \(G \cong G_{\mathrm{diag}}\)-orbit, \((G_{\mathrm{diag}} (v), \Pi )\) is a Poisson homogeneous space of \((G, \pi _{\mathrm{st}})\). It is also easy to see that \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}({\overline{v}}_\cdot B) = 0\) and \(\varpi (\mu _1)(e_\cdot B, {\overline{v}}_\cdot B) = 0\). It follows that \(\Pi (e_\cdot B, {\overline{v}}_\cdot B) = 0\). By Example A.1, the map in (A.8) is an isomorphism of Poisson homogeneous spaces of \((G, \pi _{\mathrm{st}})\). \(\square \)

Recall the Poisson manifold \((F_2, \pi _2)\) from Sect. 4.4. By [39, Theorem 7.8] (see also [40, Proposition 5.6]), the map

$$\begin{aligned} J_2: \;\; (F_2, \, \pi _2) \longrightarrow (G/B \times G/B, \; \Pi ), \;\; [g_1, g_2]_{F_2} \longmapsto ({g_1}_\cdot B, \, {g_1g_2}_\cdot B), \end{aligned}$$
(A.9)

is a Poisson isomorphism, with

$$\begin{aligned} J_2^{-1}: \;\; (G/B \times G/B, \; \Pi ) \longrightarrow (F_2, \pi _2), \;\; ({h_1}_\cdot B, \, {h_2}_\cdot B) \longmapsto [h_1, \, h_1^{-1}h_2]_{{\scriptscriptstyle F}_2}.\nonumber \\ \end{aligned}$$
(A.10)

Note that \(J_2\) is G-equivariant if \(F_2\) is given the G-action by

$$\begin{aligned} g_\cdot [g_1, \, g_2]_{F_2} = [gg_1, \; g_2]_{F_2}, \quad g, g_1, g_2 \in G. \end{aligned}$$
(A.11)

By Lemma A.2, we have the following interpretation of the Poisson homogeneous space \((G/B(v), \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}(v)}})\) as a Poisson submanifold in \((F_2, \pi _2)\).

Lemma A.3

For any \(v \in W\), the map

$$\begin{aligned} E_v:\;\; (G/B(v), \; \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}(v)}}) \longrightarrow (F_2, \, \pi _2), \;\;\; g_\cdot B(v) \longmapsto [g, \, {\overline{v}}]_{F_2}, \quad g \in G, \end{aligned}$$

is a Poisson embedding.

1.2 Some auxiliary Poisson morphisms

Recall that for any \(w \in W\), \(B^-wB/B\) is a Poisson submanifold of \((G/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\) (see [24, Theorem 1.5]), and recall that BwB is a Poisson submanifold of \((G, \pi _{\mathrm{st}})\). Recall also from Sect. 2.3 that using the product decomposition \({\overline{w}}N^- {\overline{w}}^{\, 1} = N_wN_w^-=N_w^-N_w\), where again

$$\begin{aligned} N_w = N \cap ({\overline{w}}N^- {\overline{w}}^{\, -1}) \quad \text{ and } \quad N_w^- = N^- \cap ({\overline{w}}N^- {\overline{w}}^{\, -1}), \end{aligned}$$

every \(a \in {\overline{w}}N^- {\overline{w}}^{\, -1}\) can be uniquely written as

$$\begin{aligned} a = a_+ a_- = a^\prime _- a^\prime _+ \quad \text{ with } \quad a_+, a^\prime _+ \in N_w, \; a_-, a^\prime _- \in N_w^-. \end{aligned}$$
(A.12)

Lemma A.4

For any \(w \in W\), both maps

$$\begin{aligned}&p^w_1: \;\; (wB^-B, \, \pi _{\mathrm{st}}) \longrightarrow (B^-wB/B, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}), \;\; a {\overline{w}}b \longmapsto a_-{\overline{w}}_\cdot B, \quad a \in {\overline{w}}N^- {\overline{w}}^{\, -1}, \; b \in B,\\&p^w_2: \;\; (wB^-B, \, \pi _{\mathrm{st}}) \longrightarrow (BwB, \pi _{\mathrm{st}}), \;\; a{\overline{w}}b \longmapsto a^\prime _+{\overline{w}}b, \quad a \in {\overline{w}}N^- {\overline{w}}^{\, -1}, \; b \in B, \end{aligned}$$

are both Poisson, where \(a \in {\overline{w}}N^- {\overline{w}}^{\, -1}\) is decomposed as in (A.12). Furthermore, equip T with the zero Poisson structure. Then the map

$$\begin{aligned} j_w \;\; (wB^-B, \, \pi _{\mathrm{st}}) \longrightarrow (T, 0), \;\; a{\overline{w}}nt \longmapsto t, \quad a \in {\overline{w}}N^- {\overline{w}}^{\, -1}, n \in N, \, t \in N, \end{aligned}$$

is also Poisson.

Proof

Since the projection \((G, \pi _{\mathrm{st}})\) to \((G/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\) is Poisson, to prove \(p^w_1\) is Poisson, it suffices to show that

$$\begin{aligned} {\tilde{p}}^w_1: \;\; (wB^-B/B, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}) \longrightarrow (B^-wB/B, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}), \;\; a {\overline{w}}_\cdot B \longmapsto a_-{\overline{w}}_\cdot B, \end{aligned}$$

is Poisson, where again \(a \in {\overline{w}}N^- {\overline{w}}^{\, -1}\) is decomposed as in (A.12). For \(g,h \in G\), let

$$\begin{aligned}&\sigma _{g}:\;\;\; G/B \longrightarrow G/B, \;\; \;g'_\cdot B \longmapsto gg'_\cdot B, \quad g'\in G,\\&\sigma _{h_\cdot {\scriptscriptstyle B}}:\;\; \;G \longrightarrow G/B, \;\;\; h'\longrightarrow h'h_\cdot B, \quad h' \in G. \end{aligned}$$

Since the left action of \((G, \pi _{\mathrm{st}})\) on \((G/B, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\) is Poisson, one has

$$\begin{aligned} {\tilde{p}}^w_1(a {\overline{w}}_\cdot B) = {\tilde{p}}^w_1(a_+a_- {\overline{w}}_\cdot B)= ({\widetilde{p}}^w_1\circ \sigma _{a_+}) (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}(a_-{\overline{w}}_\cdot B)) + ({\tilde{p}}^w_1 \circ \sigma _{a_-{\overline{w}}_\cdot {\scriptscriptstyle B}}) (\pi _{\mathrm{st}}(a_+)). \end{aligned}$$

Since \(B^-wB/B\) is a Poisson submanifold of \((G/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\), one has

$$\begin{aligned} ({\widetilde{p}}^w_1\circ \sigma _{a_+}) (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}(a_-{\overline{w}}_\cdot B)) =\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}(a_-{\overline{w}}_\cdot B). \end{aligned}$$

Since \(N_w\) is a coisotropic subgroup of \((G, \pi _{\mathrm{st}})\), \(({\tilde{p}}^w_1 \circ \sigma _{a_-{\overline{w}}_\cdot {\scriptscriptstyle B}}) (\pi _{\mathrm{st}}(a_+))=0\). Thus

$$\begin{aligned} {\tilde{p}}^w_1(a {\overline{w}}_\cdot B) = \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}(a_-{\overline{w}}_\cdot B). \end{aligned}$$

This shows that \({\tilde{p}}^w_1\) is Poisson. Similarly, using the multiplicativity of \(\pi _{\mathrm{st}}\) and the fact that \(N_w^-\) is a coisotropic subgroup of \((G, \pi _{\mathrm{st}})\) (which can be proved using a similar argument as that in the proof of [41, Lemma 10]), one shows that \(p_2^w\) is Poisson.

To show that \(j_w\) is Poisson, since that \(p_2^w\) is Poisson, it suffices to show that

$$\begin{aligned} j_w^\prime : (BwB, \pi _{\mathrm{st}}) \longrightarrow (T, 0),\;\; j_w^\prime (g' t) = t, \quad g' \in N_w {\overline{w}}N, \, t \in T, \end{aligned}$$

is Poisson. By [41, Lemma 10], both \(N_w{\overline{w}}\) and N are coisotropic submanifolds of \((G, \pi _{\mathrm{st}})\). By the multiplicativity of \(\pi _{\mathrm{st}}\), \(N_w {\overline{w}}N\) is also coisotropic with respect to \(\pi _{\mathrm{st}}\). Writing \(g \in BwB\) uniquely as \(g = g't\), where \(g' \in N_w {\overline{w}}N\) and \(t \in T\), one has \(\pi _{\mathrm{st}}(g) = r_t \pi _{\mathrm{st}}(g')\). Hence \(j_w^\prime (\pi _{\mathrm{st}}(g)) = 0\). \(\square \)

For \(w \in W\) and \(Q = B(v)\) or N(v), recall from (2.19) the isomorphism

$$\begin{aligned} I^w_{\scriptscriptstyle Q}:&\;\; wB^-B/Q \longrightarrow (B^-wB/B) \times (BwB/Q) \subset (G/B) \times (G/Q), \\&\quad a{\overline{w}}b_\cdot Q \longmapsto (a_-{\overline{w}}_\cdot B, \; a^\prime _+ {\overline{w}}b_\cdot Q), \quad a \in {\overline{w}}N^- {\overline{w}}^{\, -1}, \, b \in B, \end{aligned}$$

where, again, \(a \in {\overline{w}}N^- {\overline{w}}^{\, -1}\) is decomposed as in (A.12). Note that \(I^w_{\scriptscriptstyle Q}\) is T-equivariant, where T acts on both G/B and G/Q by left translation and on \(G/B \times G/Q\) diagonally. For \(\xi \in {\mathfrak {h}}= \mathrm{Lie}(T)\), let \(\rho _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}(\xi )\) be the vector field on G/Q given by

$$\begin{aligned} \rho _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}(\xi )(g_\cdot Q) = \frac{d}{dt}|_{t = 0} \exp (t\xi )g_\cdot Q, \quad g \in G. \end{aligned}$$
(A.13)

Let again \(\{H_q\}_{q=1}^d\) be a basis of \({\mathfrak {h}}\) that is orthonormal with respect to \(\langle , \rangle \). Introduce the mixed product Poisson structure \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}} \bowtie _{\mu _0} \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}\) (see Sect. 4.2) on \((G/B) \times (G/Q)\) by

$$\begin{aligned}&\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}} \bowtie _{\mu _0} \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}} = (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}, \; 0) + (0, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}) +\mu _0, \quad \text{ where }\\&\mu _0 = \sum _{q=1}^d (\rho _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}(H_q), \; 0) \wedge (0, \;\rho _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}(H_q)). \end{aligned}$$

It follows from the definition of \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}} \bowtie _{\mu _0} \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}\) that \((B^-wB/B) \times (BwB/Q)\) is a Poisson submanifold of \(((G/B) \times (G/Q), \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}} \bowtie _{\mu _0} \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\).

Lemma A.5

For every \(w \in W\), the map

$$\begin{aligned} I_{\scriptscriptstyle Q}^w: \;\; (wB^-B/Q, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}) \longrightarrow ((B^-wB/B) \times (BwB/Q), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}} \bowtie _{\mu _0} \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\qquad \quad \end{aligned}$$
(A.14)

is a Poisson isomorphism.

Proof

Since \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}\) is a quotient Poisson structure, \(I^w_{\scriptscriptstyle Q}\) is Poisson as long as \(I^w_{\{e\}}\) is Poisson. Assume thus \(Q = \{e\}\) and note that in this case \(G/Q = G\) so \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}} = \pi _{\mathrm{st}}\). Consider the open submanifold \((wB^-B) \times (wB^-B)\) of \(G \times G\) and the map

$$\begin{aligned}&D_w: \; (wB^-B) \times (wB^-B) \longrightarrow (B^-wB/B) \times (BwB), \\&\quad (a{\overline{w}}b_1, \; c{\overline{w}}b_2) \longmapsto (a_-{\overline{w}}_\cdot B, \; c^\prime _+{\overline{w}}b_2 ), \end{aligned}$$

where \(a, c \in {\overline{w}}N^- {\overline{w}}^{\, -1}\), \(b_1, b_2\in B\), and \(a = a_+a_-\) and \(c = c^\prime _- c^\prime _+\) with \(a_+, c^\prime _+ \in N_w\) and \(a_-, c^\prime _- \in N_w^-\). We first prove that

$$\begin{aligned}&D_w: \; \left( (wB^-B) \times (wB^-B), \; \Pi _{\mathrm{st}}\right) \nonumber \\&\quad \longrightarrow \left( (B^-wB/B) \times (BwB), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}} \bowtie _{\mu _0} \pi _{\mathrm{st}}\right) \end{aligned}$$
(A.15)

is Poisson. Indeed, recall that \(\Pi _{\mathrm{st}}= (\pi _{\mathrm{st}}, 0) + (0, \pi _{\mathrm{st}}) + \mu _1 + \mu _2\), where \(\mu _1\) and \(\mu _2\) are respectively given in (A.6) and (A.7). By Lemma A.4, one has

$$\begin{aligned} D_w((\pi _{\mathrm{st}}, 0) + (0, \pi _{\mathrm{st}})) = (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}, \; 0) + (0, \; \pi _{\mathrm{st}}). \end{aligned}$$

By the definition of \(D_w\), \(D_w(x^L, 0) = 0\) for all \(x \in {\mathfrak {b}}=\mathrm{Lie}(B)\). Thus \(D_w(\mu _2) = 0\). It also follows from the definition of \(D_w\) that for \(\alpha \in \Delta ^+\), if \(w^{-1}(\alpha ) \in -\Delta ^+\), then \(D_w((e_\alpha ^R, 0)) = 0\), and if \(w^{-1}(\alpha ) \in \Delta ^+\), then \(D_w((0, e_{-\alpha }^R)) = 0\). Consequently,

$$\begin{aligned} D_w(\mu _1) = D_w\left( \sum _{q}^d (H^R_q, 0) \wedge (0, H^R_q)\right) = \mu _0. \end{aligned}$$

This shows that \(D_w\) in (A.15) is Poisson. As the diagonal embedding \((wB^-B, \pi _{\mathrm{st}}) \rightarrow \left( (wB^-B) \times (wB^-B), \Pi _{\mathrm{st}}\right) \) is Poisson, we see that \(I^w_{\{e\}}\) is Poisson. \(\square \)

We now turn to the isomorphism \(\zeta ^w: B^-wB/B\rightarrow {{\mathcal {O}}}^{w_0w^{-1}}\), for \(w \in W\), given in (2.22). Recall also that \(t^u = {\overline{u}}^{\, -1} t {\overline{u}}\in T\) for \(t \in T\) and \(u \in W\).

Lemma A.6

For any \(w \in W\), the map

$$\begin{aligned} \zeta ^w: \;(B^-wB/B, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}) \longrightarrow ({{\mathcal {O}}}^{w_0w^{-1}}, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}),\;\; m{\overline{w}}_\cdot B \longmapsto (\overline{w_0w^{-1}}\, m^{-1})_\cdot B, \;\; m \in N_w^-, \end{aligned}$$

is a T-equivariant Poisson isomorphism, where \(t \in T\) acts on \(B^-wB/B\) by left translation by t and on \({{\mathcal {O}}}^{w_0w^{-1}}\) by left translation by \(t^{ww_0}\).

Proof

Let \(u = w_0w^{-1}\) so that \({\overline{u}}= \overline{w_0} \,{\overline{w}}^{\, -1}\). It follows from \(N_u = {\overline{u}}\,N_w^{-} \,{\overline{u}}^{\, -1}\) that \(\zeta ^w\) is a well-defined T-equivariant isomorphism with the T-actions on both sides as described. To show that \(\zeta ^w\) is a Poisson isomorphism, consider the two Poisson isomorphisms

$$\begin{aligned}&\zeta _1: \;\; \; (G/B, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}) \longrightarrow (G/B^-, \, \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}}^-}), \;\;\; \zeta _1(g_\cdot B) = g(\overline{w_0}^{\, -1})_\cdot B^-, \quad g \in G,\\&\zeta _2: \;\;\; (G/B^-, \, \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}}^-}) \longrightarrow (B^-\backslash G, \, -\pi _{{{\scriptscriptstyle B}}^-\backslash {\scriptscriptstyle G}}), \;\;\; \zeta _2(g_\cdot B^-) = {B^-}_\cdot g^{-1}, \quad g \in G, \end{aligned}$$

where \(\pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}}^-}\) and \(\pi _{{{\scriptscriptstyle B}}^-\backslash {\scriptscriptstyle G}}\) respectively denote the Poisson structures on \(G/B^-\) and \(B^-\backslash G\) that are projections of \(\pi _{\mathrm{st}}\) on G. The restriction of the composition \(\zeta _2 \circ \zeta _1\) to \((B^-wB/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}) \subset (G/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\) gives the Poisson isomorphism

$$\begin{aligned} \zeta _3:&\;\; (B^-wB/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\longrightarrow (B^-\backslash B^-uB^-,\, -\pi _{{{\scriptscriptstyle B}}^-\backslash {\scriptscriptstyle G}}),\\&\;\;\zeta _3(m{\overline{w}}_\cdot B) = {B^-}_\cdot \, \overline{w_0} (m{\overline{w}})^{-1} = {B^-}_\cdot ({\overline{u}}\, m^{-1}), \quad m \in N_w^-. \end{aligned}$$

Note that \({\overline{u}}N_w^- = N {\overline{u}}\cap {\overline{u}}N^-\). By [41, Lemma 14], the map

$$\begin{aligned} \zeta _{{\overline{u}}}: (B^-\backslash B^-uB^-, \, -\pi _{{{\scriptscriptstyle B}}^-\backslash {\scriptscriptstyle G}})\longrightarrow (BuB/B, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}}), \;\; \zeta _{{\overline{u}}}({B^-}_\cdot x) = x_\cdot B, \;\;x \in N{\overline{u}}\cap {\overline{u}}N^-, \end{aligned}$$

is a Poisson isomorphism. As \(\zeta ^w = \zeta _{{\overline{u}}} \circ \zeta _3\), we see that \(\zeta ^w\) is a Poisson isomorphism. \(\square \)

For \(v, w \in W\), we now relate \((BwB/N(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)})\) and \((BwB/B(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)})\). Let

$$\begin{aligned} K^w_v: BwB/N(v) \longrightarrow (BwB/B(v)) \times T, \;\; n_1{\overline{w}}n_2 t_\cdot N(v) \longmapsto ({n_1{\overline{w}}n_2}_\cdot B(v), \; t),\qquad \end{aligned}$$
(A.16)

where \(n_1 \in N_w, \, n_2 \in N_v\), and \(t \in T\). It is clear that \(K^w_v\) is a T-equivariant isomorphism, where \(t_1 \in T\) acts on BwB/N(v) by left translation by \(t_1\) and on \((BwB/B(v)) \times T\) by

$$\begin{aligned} t_1 \cdot (g_\cdot B(v), \, t) = (t_1 g_\cdot B(v), \; t_1^wt), \quad t_1, \, t \in T, \, g \in G. \end{aligned}$$

Define the bi-vector field \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)} \bowtie _{\mu ^\prime } 0\) on \((BwB/B(v)) \times T\) by

$$\begin{aligned}&\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)} \bowtie _{\mu ^\prime } 0 = (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)}, \; 0) + \mu ^\prime , \quad \text{ where } \nonumber \\&\mu ^\prime = -\sum _{q=1}^d (\rho _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)}(w(H_q)), \; 0) \wedge (0, \; H_q^R). \end{aligned}$$
(A.17)

Lemma A.7

For any \(w, v \in W\),

$$\begin{aligned} K^w_v: \; (BwB/N(v), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) \longrightarrow ((BwB/B(v)) \times T, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)} \bowtie _{\mu ^\prime } 0) \end{aligned}$$

is a Poisson isomorphism.

Proof

Since the projections

$$\begin{aligned}&(BwB,\; \pi _{\mathrm{st}}) \longrightarrow (BwB/N(v), \;\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}),\\&(BwB/T, \;\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}) \longrightarrow (BwB/B(v), \;\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)}) \end{aligned}$$

are T-equivariant and Poisson, it is enough to prove Lemma A.7 for \(v = {w_0}\), i.e., to prove that

$$\begin{aligned} K := K^w_{w_0}:\;(BwB, \,\pi _{\mathrm{st}}) \longrightarrow ((BwB/T) \times T, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle T}} \bowtie _{\mu ^\prime } 0) \end{aligned}$$

is Poisson. Consider again \(G \times G\) with the multiplicative Poisson structure \(\Pi _{\mathrm{st}}\) from (A.4). By (A.5), \((BwB) \times G\) is a Poisson submanifold of \((G \times G, \Pi _{\mathrm{st}})\). Define

$$\begin{aligned}&K^\prime : \; BwB \times G \longrightarrow (G/T) \times T, \;\;(g' t, \; g) \longmapsto (g_\cdot T, \; t),\quad \\&g' \in N{\overline{w}}N, \, g \in G, \, t \in T. \end{aligned}$$

Since K is the composition of \(K^\prime \) with the diagonal Poisson embedding \((BwB, \pi _{\mathrm{st}})\hookrightarrow (BwB \times G, \Pi _{\mathrm{st}})\), K is Poisson once we prove that

$$\begin{aligned} K^\prime : (BwB \times G, \;\Pi _{\mathrm{st}}) \longrightarrow ((G/T) \times T, \; (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}, 0) + \mu ^\prime ) \end{aligned}$$

is Poisson. Recall again that \(\Pi _{\mathrm{st}}= (\pi _{\mathrm{st}}, 0) + (0, \pi _{\mathrm{st}}) + \mu _1 + \mu _2\), with \(\mu _1\) and \(\mu _2\) respectively given in (A.6) and (A.7). By Lemma A.4, \(K^\prime (\pi _{\mathrm{st}}, 0)=0\). By the definition of \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}\), \(K^\prime (0, \pi _{\mathrm{st}}) = (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}, 0)\). Thus

$$\begin{aligned} K^\prime ((\pi _{\mathrm{st}}, 0) + (0, \pi _{\mathrm{st}})) = (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}, 0). \end{aligned}$$

It follows from the definitions that \(K^\prime (e_\alpha ^L, 0) = K^\prime (e_\alpha ^R, 0) = 0\) for all \(\alpha \in \Delta ^+\) and that \(K^\prime (0, x^L) = 0\) for \(x \in {\mathfrak {h}}\). Furthermore, it follows from the definition of \(K^\prime \) that

$$\begin{aligned} K^\prime (x^R, 0) = (0, \, (w^{-1}(x))^R) \quad \text{ and } \quad K^\prime (0, x^R) = (\rho _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}(x), \, 0), \quad x \in {\mathfrak {h}}. \end{aligned}$$

The fact that \(K^\prime \) is Poisson now follows from

$$\begin{aligned} K^\prime (\mu _1+\mu _2)&= K^\prime \left( \sum _{q=1}^d(H_q^R, \,0) \wedge (0, \, H_q^R)\right) \\&=\sum _{q=1}^d (0, \, (w^{-1}(H_q))^R) \wedge (\rho _{{\scriptscriptstyle G}/{\scriptscriptstyle T}}(H_q), \, 0) = \mu ^\prime . \end{aligned}$$

\(\square \)

For \(v, w \in W\), recall from (2.20) and (2.21) the isomorphisms

$$\begin{aligned}&\zeta ^{(w, v)}_{{\scriptscriptstyle B}(v)}: \;\; BwB/B(v) \longrightarrow {{\mathcal {O}}}^{(w, v)}, \;\;\; {n_1{\overline{w}}n_2}_\cdot B(v) \longmapsto [n_1{\overline{w}}, \; n_2{\overline{v}}]_{F_2},\\&{\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)}: \;\; BwB/N(v) \longrightarrow {{\mathcal {O}}}^{(w, v)} \times T, \;\;\; n_1{\overline{w}}n_2 t_\cdot N(v) \longmapsto ([n_1{\overline{w}}, \; n_2{\overline{v}}]_{F_2},\, t), \end{aligned}$$

where \(n_1 \in N_w, \, n_2 \in N_v\) and \(t \in T\). Note that \(\zeta ^{(w, v)}_{{\scriptscriptstyle B}(v)}\) and \({\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)}\) are T-equivariant, where \(t_1 \in T\) acts on BwB/B(v) and BwB/N(v) by left translation by \(t_1\) and on \({{\mathcal {O}}}^{(w, v)} \subset F_2\) and on \({{\mathcal {O}}}^{(w, v)} \times T\) respectively by (see (2.10))

$$\begin{aligned}&t_1 \cdot [n_1{\overline{w}}, \, n_2{\overline{v}}]_{{\scriptscriptstyle F}_2} = [t_1n_1{\overline{w}}, \, n_2{\overline{v}}]_{{\scriptscriptstyle F}_2}, \\&t_1 \cdot ([n_1{\overline{w}}, \, n_2{\overline{v}}]_{{\scriptscriptstyle F}_2}, \, t) = ([t_1n_1{\overline{w}}, \, n_2{\overline{v}}]_{{\scriptscriptstyle F}_2}, \, t_1^wt), \quad n_1 \in N_w, \, n_2 \in N_v, \, t \in T. \end{aligned}$$

Equip \({{\mathcal {O}}}^{(w, v)}\) with the standard Poisson structure \(\pi _{2}\) given in (4.10), and let \(\mu ^{\prime \prime }\) be the bi-vector field on \({{\mathcal {O}}}^{(w, v)} \times T\) by

$$\begin{aligned} \mu ^{\prime \prime } = -\sum _{q=1}^d (\rho _2(w(H_q)), \, 0) \wedge (0, \, H_q^R), \end{aligned}$$
(A.18)

where \(\rho _2\) is defined in (5.1).

Lemma A.8

The maps

$$\begin{aligned}&\zeta ^{(w, v)}_{{\scriptscriptstyle B}(v)}: \;\; (BwB/B(v), \;\pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}(v)}}) \longrightarrow ({{\mathcal {O}}}^{(w, v)}, \;\pi _{2}),\\&{\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)}: \;\; (BwB/N(v), \;\pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle N}(v)}}) \longrightarrow ({{\mathcal {O}}}^{(w, v)} \times T, \;(\pi _{2}, \, 0) + \mu ^{\prime \prime }) \end{aligned}$$

are Poisson isomorphisms.

Proof

As BwB/B(v) is a Poisson submanifold of \((G/B(v), \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}(v)}})\), by Lemma A.3, one has the T-equivariant Poisson embedding

$$\begin{aligned} (BwB/B(v), \; \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}(v)}}) \longrightarrow (F_2, \, \pi _2), \;\;n{\overline{w}}b_\cdot B(v)\longmapsto [n{\overline{w}}b, \, {\overline{v}}]_{{\scriptscriptstyle F}_2} = [n{\overline{w}}, \, b{\overline{v}}]_{{\scriptscriptstyle F}_2}, \end{aligned}$$

where \(n \in N_w\) and \(b \in B\). Since the image of the above embedding is precisely \({{\mathcal {O}}}^{(w, v)}\), we see that the \(\zeta ^{(w, v)}_{{\scriptscriptstyle B}(v)}\) is a Poisson isomorphism. The fact that \({\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)} = (\zeta ^{(w, v)}_{{\scriptscriptstyle B}(v)} \times \mathrm{Id}) \circ K^w_v\) is a Poisson isomorphism follows directly from Lemma A.7. \(\square \)

1.3 Proof of Theorem 5.3

Let again \(w, v \in W\), and let the notation be as in the statement of Theorem 5.3. First let \(Q = B(v)\). By Lemmas A.5A.6, and A.8, one has the Poisson isomorphisms

(A.19)

Since \(J^w_{{\scriptscriptstyle B}(v)} = (\zeta ^w \times \zeta ^{(w, v)}_{{\scriptscriptstyle B}(v)}) \circ I^w_{{\scriptscriptstyle B}(v)}\), one sees that

$$\begin{aligned} J^w_{{\scriptscriptstyle B}(v)}: \;\; (wB^-B/B(v), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)}) \longrightarrow \left( {{\mathcal {O}}}^{w_0w^{-1}} \times {{\mathcal {O}}}^{(w, v)}, \; \pi _{1, 2}\right) \end{aligned}$$

is Poisson. To see that \(J^w_{{\scriptscriptstyle N}(v)}\) is Poisson, note that

$$\begin{aligned} J^w_{{\scriptscriptstyle N}(v)} = \left( \mathrm{Id} \times {\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)}\right) \circ (\zeta ^w \times \mathrm{Id}) \circ I^w_{{\scriptscriptstyle N}(v)}. \end{aligned}$$

By Lemmas A.5 and A.6,

$$\begin{aligned} \left( (\zeta ^w \times \mathrm{Id})\circ I^w_{{\scriptscriptstyle N}(v)}\right) (\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) = (\pi _1, \, 0) + (0, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) +\mu _0^\prime , \end{aligned}$$

where \(\mu _0^\prime = \sum _{q=1}^d (\rho _1(w_0w^{-1}(H_q)), \, 0) \wedge (0, \, \rho _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}(H_q))\). By Lemma A.8 and the T-equivariance of \({\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)}\), one has

$$\begin{aligned}&(\mathrm{Id} \times {\zeta }^{(w, v)}_{{\scriptscriptstyle N}(v)})((\pi _1, \, 0) + (0, \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) +\mu _0^\prime ) = (\pi _1, 0, 0) +(0, \, \pi _2, \, 0) + (0, \, \mu ^{\prime \prime }) \\&\quad + \sum _{q=1}^d \left( (\rho _1(w_0w^{-1}(H_q)), \, 0, \, 0) \wedge ((0, \, \rho _2(H_q), \, 0) + (0, \, 0, \, (w^{-1}(H_q))^R))\right) \\&\quad =(\pi _1, 0, 0) + (0, \, \pi _2, \, 0) + \mu _{23} + \mu _{12} + \mu _{13} = \pi _{1, 2, 0}. \end{aligned}$$

It follows that \(J^w_{{\scriptscriptstyle N}(v)}: (wB^-B/N(v), \, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) \rightarrow ({{\mathcal {O}}}^{w_0w^{-1}} \times {{\mathcal {O}}}^{(w, v)} \times T, \, \pi _{1,2,0})\) is Poisson. This finishes the proof of Theorem 5.3.

1.4 T-leaves of \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\)

For any Poisson variety \((X, {\pi _{\scriptscriptstyle X}})\) with an action by an algebraic \({{\mathbb {C}}}\)-torus \({{\mathbb {T}}}\) via Poisson isomorphisms, define (see [40]) the \({{\mathbb {T}}}\)-leaf of \({\pi _{\scriptscriptstyle X}}\) through \(x \in X\) to be \({{\mathbb {T}}}\Sigma _x = \bigcup _{t \in {{\mathbb {T}}}} t\Sigma _x\), where \(\Sigma _x\) is the symplectic leaf of \({\pi _{\scriptscriptstyle X}}\) through x. For the T-Poisson variety \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\), where \(Q = B(v)\) or N(v) for \(v \in W\) and T acts on G/Q by left translation, we now determine the T-leaves of \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\).

Let \(\varpi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}}: G \rightarrow G/Q\) be the projection. Recall the monoidal product \(*\) on W determined by \(w *s_\alpha = ws_\alpha \) if \(l(ws_\alpha ) =l (w) + 1\) and \(w *s_\alpha = w\) if \(l(ws_\alpha ) = l(w) - 1\).

Theorem A.9

For \(v \in W\) and \(Q = B(v)\) or N(v), the T-leaves of \((G/Q, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}})\) are precisely the subvarieties

$$\begin{aligned} L_{w, y}^{{\scriptscriptstyle G}/{\scriptscriptstyle Q}} \, {\mathop {=}\limits ^{{\mathrm{def}}}} \,\varpi _{{\scriptscriptstyle G}/{\scriptscriptstyle Q}} \left( (BwB) \cap B^-yB {\overline{v}}^{\, -1}\right) \subset G/Q, \end{aligned}$$

where \(y, w \in W\) and \(y \le w *v\).

Proof

Consider first the case of \(Q = B(v)\) and recall from Lemma A.3 the T-equivariant Poisson embedding

$$\begin{aligned} E_v:\;\; (G/B(v), \; \pi _{{\scriptscriptstyle G}/{{\scriptscriptstyle B}(v)}}) \longrightarrow (F_2, \, \pi _2), \;\;\; g_\cdot B(v) \longmapsto [g, \, {\overline{v}}]_{F_2}, \quad g \in G, \end{aligned}$$

where T acts on \(F_2\) by (2.10). It follows from the Bruhat decomposition \(G = \bigsqcup _{w \in W} BwB\) that the image of \(E_v\) is given by

$$\begin{aligned} E_v(G/B(v)) = \bigsqcup _{w \in W} {{\mathcal {O}}}^{(w, v)} \subset F_2. \end{aligned}$$

The T-leaves of \((F_r, \pi _r)\), for any \(r \ge 1\), are determined in [40, Theorem 1.1]. For the case of \(r = 2\) at hand, let

$$\begin{aligned} \mu _{{\scriptscriptstyle F}_2}: \;\; F_2 \longrightarrow G/B, \;\; [g_1, g_2]_{{\scriptscriptstyle F}_2} \longmapsto {g_1g_2}_\cdot B. \end{aligned}$$

By [40, Theorem 1.1], the T-leaves of \((F_2, \pi _2)\) are precisely the intersections

$$\begin{aligned} R^{(w, x)}_y \, {\mathop {=}\limits ^\mathrm{def}} \, {{\mathcal {O}}}^{(w, x)} \cap \mu _{{\scriptscriptstyle F}_2}^{-1}(B^-yB/B), \end{aligned}$$

where \(w, x, y \in W\) and \(y \le w*x\). Thus, for each \(w \in W\), \({{\mathcal {O}}}^{(w, v)}\subset F_2\) is a union of all the T-leaves \(R^{(w, v)}_y\) with \(y \le w *v\). It is easy to see that \(L_{w, y}^{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)} = E_v^{-1}(R^{(w, v)}_y)\) for all \(w, y \in W\) with \(y \le w*v\). Thus the \(L_{w, y}^{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)}\)’s are precisely all the T-leaves of \((G/B(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)})\).

Consider now \(Q = N(v)\) and the decomposition \(G/N(v) = \bigsqcup _{w \in W} BwB/N(v)\), where each BwB/N(v) is a T-invariant Poisson submanifold with respect to \(\pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}\). Let \(w \in W\) and recall from Lemma A.7 the T-equivariant Poisson isomorphism

$$\begin{aligned} K^w_v: \; (BwB/N(v), \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) \longrightarrow ((BwB/B(v)) \times T, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)} \bowtie _{\mu ^\prime } 0), \end{aligned}$$

where \(t_1 \in T\) acts on \((BwB/B(v)) \times T\) by

$$\begin{aligned} t_1 \cdot (g_\cdot B(v), \, t) = (t_1 g_\cdot B(v), \; t_1^wt), \quad t_1, \, t \in T, \, g \in G. \end{aligned}$$

By [38, Lemma 2.23], the T-leaves of \(((BwB/B(v)) \times T, \; \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)} \bowtie _{\mu ^\prime } 0)\) are precisely of the form \(L \times T\), where L is a T-leaf of \((BwB/B(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}(v)})\). Applying the T-equivariant Poisson isomorphism \(K^w_v\), one sees that the T-leaves of \((BwB/N(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)})\) are precisely \(L_{w, y}^{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}\), where \(y \in W\) and \(y \le w *v\). It follows that \(L_{w, y}^{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}\), where \(w, y \in W\) and \(y \le w *v\), are all the T-leaves of \((G/N(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)})\). \(\square \)

Example A.10

When \(v = w_0\), so that \(G/N(v) = G\), one has \(w*w_0 = w_0\) for every \(w \in W\), so the condition \(y \le w*w_0\) is satisfied for every \(y \in W\), and one has \(B^-yB\overline{w_0}^{-1} = B^-yw_0B^-\). In this case, Theorem A.9 recovers the well-know result [32, 33, 36] that the T-leaves (for the T-action on G by left translation) of \((G, \pi _{\mathrm{st}})\) are precisely all the double Bruhat cells \(G^{w, u} = BwB \cap B^-uB^-\), where \(w,u \in W\).

When \(v = e\), so that \(G/B(v) = G/B\), Theorem A.9 recovers the well-know result from [24] that the T-leaves of \((G/B, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle B}})\) are precisely the open Richardson varieties \((BwB/B) \cap (B^-yB/B)\), where \(w, y \in W\) and \(y \le w\). \(\square \)

The next examples shows that for any \(w, v \in W\), the double Bruhat cell \(G^{w, v^{-1}}\), as a T-leaf of \((G, \pi _{\mathrm{st}})\), can also be embedded into G/N(v) as a T-leaf of \((G/N(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)})\).

Example A.11

For an arbitrary \(v \in W\), consider the T-leaf

$$\begin{aligned} L_{w, e}^{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)} =\varpi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)} \left( (BwB) \cap B^-B {\overline{v}}^{\, -1}\right) \end{aligned}$$

of \((G/N(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)})\). Recall from Lemma 3.7 the embedding

$$\begin{aligned} \delta _v: \;\; B^-v^{-1}B^- \longrightarrow G/N(v), \;\; g \longmapsto g_\cdot N(v). \end{aligned}$$

For \(w \in W\), denote the restriction of \(\delta _v\) to \(G^{w, v^{-1}} = BwB \cap B^-v^{-1}B^-\) by

$$\begin{aligned} \delta _{w, v} = \delta _v|_{{\scriptscriptstyle G}^{w, v^{-1}}}:\;\;\; G^{w, v^{-1}} \longrightarrow G/N(v). \end{aligned}$$
(A.20)

It then follows that the image of \(\delta _{w, v}\) is precisely the T-leaf \(L_{w, e}^{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}\) of \((G/N(v), \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)})\). As \(G^{w, v^{-1}}\) is a T-leaf of \((G, \pi _{\mathrm{st}})\), we conclude that

$$\begin{aligned} \delta _{w, v}:\;\; (G^{w, v^{-1}}, \pi _{\mathrm{st}}) {\mathop {\longrightarrow }\limits ^{\sim }} (L_{w, e}^{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}, \pi _{{\scriptscriptstyle G}/{\scriptscriptstyle N}(v)}) \end{aligned}$$

is a Poisson isomorphism of T-leaves. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, JH., Yu, S. Bott–Samelson atlases, total positivity, and Poisson structures on some homogeneous spaces. Sel. Math. New Ser. 26, 70 (2020). https://doi.org/10.1007/s00029-020-00595-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00595-1

Mathematics Subject Classification

Navigation