Skip to main content
Log in

Heisenberg and Kac–Moody categorification

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show that any Abelian module category over the (degenerate or quantum) Heisenberg category satisfying suitable finiteness conditions may be viewed as a 2-representation over a corresponding Kac–Moody 2-category (and vice versa). This gives a way to construct Kac–Moody actions in many representation-theoretic examples which is independent of Rouquier’s original approach via “control by \(K_0\).” As an application, we prove an isomorphism theorem for generalized cyclotomic quotients of these categories, extending the known isomorphism between cyclotomic quotients of type A affine Hecke algebras and quiver Hecke algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the quantum case there is one additional relation recorded just after (3.34).

  2. In [12, \(\S \)2.1], essentially finite Abelian categories were called “Schurian categories” but we will use the latter terminology for a slightly different notion.

  3. In [8] the terminology “locally Schurian” was used instead of “Schurian.”

  4. In [13], one also finds \((-)\)-bubbles which will not be needed here.

References

  1. Ariki, S.: On the decomposition numbers of the Hecke algebra of G(m,1, n). J. Math. Kyoto Univ. 36, 789–808 (1996)

    Article  MathSciNet  Google Scholar 

  2. Beliakova, A., Habiro, K., Lauda, A., Webster, B.: Cyclicity for categorified quantum groups. J. Algebra 452, 118–132 (2016)

    Article  MathSciNet  Google Scholar 

  3. Brundan, J.: On the definition of Kac–Moody 2-category. Math. Ann. 364, 353–372 (2016)

    Article  MathSciNet  Google Scholar 

  4. Brundan, J.: On the definition of Heisenberg category. Algebr. Comb. 1, 523–544 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Brundan, J.: Representations of the oriented skein category. arXiv:1712.08953

  6. Brundan, J., Comes, J., Kujawa, J.: A basis theorem for the degenerate affine oriented Brauer–Clifford supercategory. Can. J. Math. 71, 1061–1101 (2019)

    Article  MathSciNet  Google Scholar 

  7. Brundan, J., Comes, J., Nash, D., Reynolds, A.: A basis theorem for the affine oriented Brauer category and its cyclotomic quotients. Quantum Topol. 8, 75–112 (2017)

    Article  MathSciNet  Google Scholar 

  8. Brundan, J., Davidson, N.: Categorical actions and crystals. Contemp. Math. 684, 116–159 (2017)

    MATH  Google Scholar 

  9. Brundan, J., Kleshchev, A.: Representations of shifted Yangians and finite W-algebras. Mem. Am. Math. Soc. 196(918), viii+107 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov–Lauda algebras. Invent. Math. 178, 451–484 (2009)

    Article  MathSciNet  Google Scholar 

  11. Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222, 1883–1942 (2009)

    Article  MathSciNet  Google Scholar 

  12. Brundan, J., Losev, I., Webster, B.: Tensor product categorifications and the super Kazhdan–Lusztig conjecture. Int. Math. Res. Not. 20, 6329–6410 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Brundan, J., Savage, A., Webster, B.: On the definition of quantum Heisenberg category. Algebra Number Theory 14, 275–321 (2020)

    Article  MathSciNet  Google Scholar 

  14. Brundan, J., Savage, A. Webster, B.: The degenerate Heisenberg category and its Grothendieck ring. arXiv:1812.03255v2

  15. Brundan, J., Stroppel, C.: Semi-infinite highest weight categories. arXiv:1808.08022v2

  16. Cheng, S.-J., Wang, W.: Brundan–Kazhdan–Lusztig and super duality conjectures. Publ. Res. Inst. Math. Sci. 44, 1219–1272 (2008)

    Article  MathSciNet  Google Scholar 

  17. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \(_2\)-categorification. Ann. Math. 167, 245–298 (2008)

    Article  MathSciNet  Google Scholar 

  18. Dupont, B.: Rewriting modulo isotopies in Khovanov–Lauda–Rouquier’s categorification of quantum groups. arXiv:1907.09901

  19. Entova-Aizenbud, I.: Categorical actions and multiplicities in the Deligne category \( {\operatorname{Re}}\!\operatorname{p}(GL_t)\). J. Algebra 504, 391–431 (2018)

    Article  MathSciNet  Google Scholar 

  20. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. American Mathematical Society, Providence (2015)

    Book  Google Scholar 

  21. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \({\cal{O}}\) for rational Cherednik algebras. Invent. Math. 154, 617–651 (2003)

    Article  MathSciNet  Google Scholar 

  22. Grojnowski, I.: Affine \(_p\) controls the representation theory of the symmetric group and related Hecke algebras. arXiv:math.RT/9907129

  23. Kang, S.-J., Kashiwara, M.: Categorification of highest weight modules via Khovanov–Lauda–Rouquier algebras. Invent. Math. 190, 699–742 (2012)

    Article  MathSciNet  Google Scholar 

  24. Kang, S.-J., Kashiwara, M., Misra, K., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68, 499–607 (1992)

    Article  MathSciNet  Google Scholar 

  25. Khovanov, M.: Heisenberg algebra and a graphical calculus. Fundam. Math. 225, 169–210 (2014)

    Article  MathSciNet  Google Scholar 

  26. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363, 2685–2700 (2011)

    Article  MathSciNet  Google Scholar 

  27. Khovanov, M., Lauda, A.: A categorification of quantum \((n)\). Quantum Topol. 1, 1–92 (2010)

    Article  MathSciNet  Google Scholar 

  28. Licata, A., Savage, A.: Hecke algebras, finite general linear groups, and Heisenberg categorification. Quantum Topol. 4, 125–185 (2013)

    Article  MathSciNet  Google Scholar 

  29. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 2nd edn. OUP, Oxford (1995)

    Google Scholar 

  30. Mackaay, M., Savage, A.: Degenerate cyclotomic Hecke algebras and higher level Heisenberg categorification. J. Algebra 505, 150–193 (2018)

    Article  MathSciNet  Google Scholar 

  31. Nandakumar, V., Zhao, G.: Categorification via blocks of modular representations II. arXiv:2005.08248

  32. Queffelec, H., Savage, A., Yacobi, O.: An equivalence between truncations of categorified quantum groups and Heisenberg categories. J. Éc. Polytech. Math. 5, 197–238 (2018)

    Article  MathSciNet  Google Scholar 

  33. Riche, S., Williamson, G.: Tilting modules and the \(p\)-canonical basis. Astérisque no. 397, ix+184 pp. (2018)

  34. Rouquier, R.: \(2\)-Kac–Moody algebras. arXiv:0812.5023v1

  35. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19, 359–410 (2012)

    Article  MathSciNet  Google Scholar 

  36. Shan, P.: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. Ann. Sci. ÉÍ c. Norm. Sup. 44, 147–182 (2010)

    Article  MathSciNet  Google Scholar 

  37. Turaev, V., Virelizier, A.: Monoidal Categories and Topological Field Theory, Progress in Mathematics, vol. 322. Springer, Berlin (2017)

    Book  Google Scholar 

  38. Virk, R.: Derived equivalences and \(\mathfrak{sl}_2\)-categorifications for \(U_q(\mathfrak{gl}_n)\). J. Algebra 346, 82–100 (2011)

    Article  MathSciNet  Google Scholar 

  39. Webster, B.: Canonical bases and higher representation theory. Compos. Math. 151, 121–166 (2015)

    Article  MathSciNet  Google Scholar 

  40. Webster, B.: Knot invariants and higher representation theory. Mem. Am. Math. Soc. 250(1191), v+141 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Webster, B.: Unfurling Khovanov–Lauda–Rouquier algebras. arXiv:1603.06311v2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Savage.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J.B. supported in part by NSF Grant DMS-1700905. A.S. supported by Discovery Grant RGPIN-2017-03854 from the Natural Sciences and Engineering Research Council of Canada. B.W. supported by Discovery Grant RGPIN-2018-03974 from the Natural Sciences and Engineering Research Council of Canada. This research was also supported by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research and Innovation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brundan, J., Savage, A. & Webster, B. Heisenberg and Kac–Moody categorification. Sel. Math. New Ser. 26, 74 (2020). https://doi.org/10.1007/s00029-020-00602-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00602-5

Keywords

Mathematics Subject Classification

Navigation