Skip to main content
Log in

Pseudo-rotations and holomorphic curves

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove a variant of the Chance–McDuff conjecture for pseudo-rotations: under certain additional conditions, a closed symplectic manifold which admits a Hamiltonian pseudo-rotation must have deformed quantum product and, in particular, some non-zero Gromov–Witten invariants. The only assumptions on the manifold are that it is weakly monotone and that its minimal Chern number is at least two. The conditions on the pseudo-rotation are expressed in terms of the linearized flow at one of the fixed points and are hypothetically satisfied for most (but not all) pseudo-rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo, A.: Morse Theory for Hamiltonian Systems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 425. Chapman & Hall/CRC, Boca Raton, FL (2001)

    Book  Google Scholar 

  2. Abbondandolo, A., Schwarz, M.: Floer homology of cotangent bundles and the loop product. Geom. Topol. 14, 1569–1722 (2010)

    Article  MathSciNet  Google Scholar 

  3. Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory. Ergodic diffeomorphisms, (in Russian). Trudy Moskov. Mat. Obšč. 23, 3–36 (1970)

    MathSciNet  Google Scholar 

  4. Banik, M.: On the dynamics characterization of complex projective spaces, J. Fixed Point Theory Appl., 22(1), Paper No. 24, 8 pp. (2020)

  5. Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv. 53, 174–227 (1978)

    Article  MathSciNet  Google Scholar 

  6. Bramham, B.: Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves. Ann. Math. 181, 1033–1086 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bramham, B.: Pseudo-rotations with sufficiently Liouvillean rotation number are \(C^0\)-rigid. Invent. Math. 199, 561–580 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bramham, B., Hofer, H.: First steps towards a symplectic dynamics. Surv. Differ. Geom. 17, 127–178 (2012)

    Article  MathSciNet  Google Scholar 

  9. Çineli, E.: Conley conjecture and local Floer homology. Arch. Math. (Basel) 111, 647–656 (2018)

    Article  MathSciNet  Google Scholar 

  10. Çineli, E., Ginzburg, V.L., Gürel, B.Z.: From pseudo-rotations to holomorphic curves via quantum Steenrod squares. Int. Math. Res. Not. IMRN (2020). https://doi.org/10.1093/imrn/rnaa173

  11. Çineli, E., Ginzburg, V.L., Gürel, B.Z.: Another look at the Hofer–Zehnder conjecture, Preprint arXiv:2009.13052

  12. De Gosson, M., De Gosson, S., Piccione, P.: On a product formula for the Conley–Zehnder index of symplectic paths and its applications. Ann. Global Anal. Geom. 34, 167–183 (2008)

    Article  MathSciNet  Google Scholar 

  13. Fayad, B., Katok, A.: Constructions in elliptic dynamics. Ergodic Theory Dyn. Syst. 24, 1477–1520 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ginzburg, V.L.: The Conley conjecture. Ann. Math. 172, 1127–1180 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ginzburg, V.L., Gürel, B.Z.: The Conley conjecture and beyond. Arnold Math. J. 1, 299–337 (2015)

    Article  MathSciNet  Google Scholar 

  16. Ginzburg, V.L., Gürel, B.Z.: Conley conjecture revisited. Int. Math. Res. Not. IMRN (2017). https://doi.org/10.1093/imrn/rnx137

  17. Ginzburg, V.L., Gürel, B.Z.: Hamiltonian pseudo-rotations of projective spaces. Invent. Math. 214, 1081–1130 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ginzburg, V.L., Gürel, B.Z.: Pseudo-rotations vs. rotations, Preprint arXiv:1812.05782

  19. Guillemin, V., Ginzburg, V., Karshon, Y.: Cobordisms and Hamiltonian Group Actions, Mathematical Surveys and Monographs, 98. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  20. Hofer, H., Salamon, D.: Floer homology and Novikov rings. In: The Floer Memorial Volume, Progr. Math., vol. 133, Birkhäuser, Basel, 483–524, (1995)

  21. Lalonde, F., McDuff, D., Polterovich, L.: On the flux conjectures. In: Geometry, Topology, and Dynamics (Montreal, PQ, 1995), 69–85, CRM Proc. Lecture Notes, 15, Amer. Math. Soc., Providence, RI (1998)

  22. Lalonde, F., McDuff, D., Polterovich, L.: Topological rigidity of Hamiltonian loops and quantum homology. Invent. Math. 135, 369–385 (1999)

    Article  MathSciNet  Google Scholar 

  23. Le Roux, F., Seyfaddini, S.: The Anosov–Katok method and pseudo-rotations in symplectic dynamics, Preprint arxiv:2010.06237

  24. Long, Y.: Index Theory for Symplectic Paths with Applications. Birkhäuser Verlag, Basel (2002)

    Book  Google Scholar 

  25. McDuff, D.: Hamiltonian \(S^1\)-manifolds are uniruled. Duke Math. J. 146, 449–507 (2009)

    Article  MathSciNet  Google Scholar 

  26. McDuff, D., Salamon, D.: J-Holomorphic Curves and Symplectic Topology, Colloquium publications, vol. 52. AMS, Providence, RI (2004)

  27. Ono, K.: Floer–Novikov cohomology and the flux conjecture. Geom. Funct. Anal. 16, 981–1020 (2006)

    Article  MathSciNet  Google Scholar 

  28. Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer–Donaldson theory and quantum cohomology, in Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst., vol. 8, Cambridge University Press, Cambridge, 171–200 (1996)

  29. Repovš, D., Ščepin, E.V.: A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps. Math. Ann. 308, 361–364 (1997)

    Article  MathSciNet  Google Scholar 

  30. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MathSciNet  Google Scholar 

  31. Salamon, D.A.: Lectures on Floer homology, in Symplectic Geometry and Topology, IAS/Park City Math. Ser., vol. 7, Am. Math. Soc., Providence, RI, 143–229 (1999)

  32. Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45, 1303–1360 (1992)

    Article  MathSciNet  Google Scholar 

  33. Seidel, P.: A biased view of symplectic cohomology, in Current Developments in Mathematics, vol. 2006, pp. 211–253. Int. Press, Somerville, MA (2008)

    MATH  Google Scholar 

  34. Seidel, P.: The equivariant pair-of-pants product in fixed point Floer cohomology. Geom. Funct. Anal. 25, 942–1007 (2015)

    Article  MathSciNet  Google Scholar 

  35. Shelukhin, E.: On the Hofer–Zehnder conjecture, Preprint arXiv:1905.04769

  36. Shelukhin, E.: Pseudorotations and Steenrod squares, Preprint arXiv:1905.05108; to appear in J. Mod. Dyn

  37. Shelukhin, E.: Pseudo-rotations and Steenrod squares revisited, Preprint arXiv:1909.12315

  38. Shelukhin, E., Zhao, J.: The \(\mathbb{Z}/(p)\)-equivariant product-isomorphism in fixed point Floer cohomology, Preprint arXiv:1905.03666

  39. Wilkins, N.: Quantum Steenrod squares and the equivariant pair-of-pants in symplectic cohomology, Preprint arXiv:1810.02738

  40. Wilkins, N.: A construction of the quantum Steenrod squares and their algebraic relations. Geom. Topol. 24, 885–970 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor L. Ginzburg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is partially supported by NSF CAREER award DMS-1454342, NSF Grant DMS-1440140 through MSRI (BG) and by Simons Collaboration Grant 581382 (VG).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çineli, E., Ginzburg, V.L. & Gürel, B.Z. Pseudo-rotations and holomorphic curves. Sel. Math. New Ser. 26, 78 (2020). https://doi.org/10.1007/s00029-020-00609-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00609-y

Keywords

Mathematics Subject Classification

Navigation