Skip to main content
Log in

Polynomial graph invariants and the KP hierarchy

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove that the generating function for the symmetric chromatic polynomial of all simple graphs is (after an appropriate scaling change of variables) a linear combination of one-part Schur polynomials. This statement immediately implies that it is also a \(\tau \)-function of the Kadomtsev–Petviashvili integrable hierarchy of mathematical physics. Moreover, we describe a large family of polynomial graph invariants leading to the same \(\tau \)-function. In particular, we introduce the Abel polynomial for graphs and show this for its generating function. The key point here is a Hopf algebra structure on the space spanned by graphs and the behavior of the invariants on its primitive space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel, N.H.: Beweis eines Ausdruckes, von welchem die Binomialformel ein einzelner Fall ist. Journal für die reine und angewandte Mathematik 1, 159–160 (1826)

    MathSciNet  Google Scholar 

  2. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn–Sommerville relations. Compos. Math. 142, 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  3. Billey, S., McNamara, P.: The contributions of Stanley to the fabric of symmetric and quasisymmetric functions. In: Herch, P., Lam, T., Pylyavskyy, P., Reiner, V. (eds.) The Mathematical Legacy of Richard P. Stanley, pp. 83–104. AMS, Providence (2016)

    Chapter  Google Scholar 

  4. Chebotarev, P., Shamis, E.: Matrix-Forest Theorems. arXiv:math/0602575 [math.CO]

  5. Chmutov, S., Duzhin, S., Lando, S.: Vassiliev knot invariants III. Forest algebra and weighted graphs. Adv. Sov. Math. 21, 135–145 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219(3), 932–951 (2008)

    Article  MathSciNet  Google Scholar 

  7. Joni, S., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93–139 (1979)

    Article  MathSciNet  Google Scholar 

  8. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    MATH  Google Scholar 

  9. Kazarian, M., Lando, S.: Combinatorial solutions to integrable hierarchies. Russ. Math. Surv. 70(3), 453–482 (2015)

    Article  MathSciNet  Google Scholar 

  10. Kelmans, A.K., Chelnokov, V.N.: A certain polynomial of a graph and graphs with an extremal number of trees. J. Comb. Theory Ser. B 16, 197–214 (1974)

    Article  MathSciNet  Google Scholar 

  11. Knill, O.: Counting rooted forests in a network. arXiv:1307.3810 [math.SP]

  12. Krasilnikov, E.: Invariants of framed graphs and the Kadomtsev–Petviashvili hierarchy. Funct. Anal. Appl. 53, 14–26 (2019)

    MathSciNet  Google Scholar 

  13. Lando, S. K.: On primitive elements in the bialgebra of chord diagrams. In: Topics in Singularity Theory. American Mathematical Society Translations: Series 2, 180, Adv. Math. Sci., vol. 34, pp. 167–174. American Mathematical Society, Providence (1997)

  14. Lando, S.K.: On a Hopf algebra in graph theory. J. Comb. Theory Ser. B 80, 104–121 (2000)

    Article  MathSciNet  Google Scholar 

  15. Noble, S., Welsh, D.: A weighted graph polynomial from chromatic invariants of knots. Annales de l’institut Fourier 49(3), 1057–1087 (1999)

    Article  MathSciNet  Google Scholar 

  16. Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7(4), 447–453 (2000)

    Article  MathSciNet  Google Scholar 

  17. Pitman, J.: Forest volume decompositions and Abel–Cayley–Hurwitz multinomial expansions. J. Comb. Theory Ser. A 98(1), 175–191 (2002)

    Article  MathSciNet  Google Scholar 

  18. Roman, S., Rota, G.-C.: The umbral calculus. Adv. Math. 27, 95–188 (1978)

    Article  MathSciNet  Google Scholar 

  19. Rota, G.-C., Shen, J., Taylor, B.: All polynomials of binomial type are represented by Abel polynomials. Annali della Scuola Normale Superiore di Pisa Classe di Scienze, Série 4 25(3–4), 731–738 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds. In: Nonlinear Partial Differential Equations in Applied Science (Tokyo 1982), Norrth-Holland Mathematics Studies, vol. 81, pp. 259–271. North-Holland, Amsterdam (1983)

  21. Schmitt, W.R.: Incidence Hopf algebras. J. Pure Appl. Algebra 96, 299–330 (1994)

    Article  MathSciNet  Google Scholar 

  22. Schmitt, W.R.: Hopf algebra methods in graph theory. J. Pure Appl. Algebra 101(1), 77–90 (1995)

    Article  MathSciNet  Google Scholar 

  23. Stanley, R.: A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math. 111(1), 166–194 (1995)

    Article  MathSciNet  Google Scholar 

  24. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A134531

Download references

Acknowledgements

The work on this paper started during the third author’s visit to the Ohio State University, to which he expresses his gratitude. The second author appreciates the support of RSF Grant, Project 16-11-10316 dated 11.05.2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Chmutov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmutov, S., Kazarian, M. & Lando, S. Polynomial graph invariants and the KP hierarchy. Sel. Math. New Ser. 26, 34 (2020). https://doi.org/10.1007/s00029-020-00562-w

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00562-w

Mathematics Subject Classification

Navigation