Skip to main content
Log in

Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we discuss the problem of whether the difference \([X]-[Y]\) of the classes of a Fourier–Mukai pair (XY) of smooth projective varieties in the Grothendieck ring of varieties is annihilated by some power of the class \(\mathbb {L} = [ \mathbb {A}^1 ]\) of the affine line. We give an affirmative answer for Fourier–Mukai pairs of very general K3 surfaces of degree 12. On the other hand, we prove that in each dimension greater than one, there exists an abelian variety such that the difference with its dual is not annihilated by any power of \(\mathbb {L}\), thereby giving a negative answer to the problem. We also discuss variations of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arinkin, D., Căldăraru, A.: When is the self-intersection of a subvariety a fibration? Adv. Math. 231(2), 815–842 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer, New York (1985)

  3. Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572 (2002)

    MathSciNet  MATH  Google Scholar 

  4. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17. Société Mathématique de France, Paris (2004)

    Google Scholar 

  5. Baldi, G.: Some remarks on motivical and derived invariants, arXiv e-prints (2019), arXiv:1910.04733

  6. Batyrev, V.V.: Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publ., River Edge, NJ, pp. 1–32 (1998)

  7. Borisov, L., Căldăraru, A.: The Pfaffian–Grassmannian derived equivalence. J. Algebraic Geom. 18(2), 201–222 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Borisov, L.A., Căldăraru, A., Perry, A.: Intersections of two Grassmannians in \({\mathbb{P}}^9\). J. Reine Angew. Math. 760, 133–162 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Baston, R.J., Eastwood, M.G.: The Penrose transform, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, (1989). Its interaction with representation theory, Oxford Science Publications

  10. Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4), 1011–1032 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53(6), 1183–1205, 1337 (1989)

  12. Birkenhake, C., Lange, H.: Complex abelian varieties, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302. Springer, Berlin (2004)

  13. Bondal, A.I., Larsen, M., Lunts, V.A.: Grothendieck ring of pretriangulated categories. Int. Math. Res. Not. 29, 1461–1495 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Bondal, A., Orlov, D.: Semiorthogonal decomposition for algebraic varieties, arXiv:alg-geom/9506012

  15. Borisov, L.A.: The class of the affine line is a zero divisor in the Grothendieck ring. J. Algebraic Geom. 27(2), 203–209 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Căldăraru, A.: The Mukai pairing. II. The Hochschild–Kostant–Rosenberg isomorphism. Adv. Math. 194(1), 34–66 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Cauwbergs, T.: Splicing motivic zeta functions. Rev. Mat. Complut. 29(2), 455–483 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Coskun, I., Robles, C.: Flexibility of Schubert classes. Differ. Geom. Appl. 31(6), 759–774 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Danilov, V.I.: Decomposition of some birational morphisms, Izv. Akad. Nauk SSSR Ser. Mat. 44, no. 2, 465–477, 480 (1980)

  20. Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Dolgachev, I.V.: Endomorphisms of complex abelian varieties, http://www.math.lsa.umich.edu/~idolga/MilanLect.pdf (April 2016)

  22. Efimov, A.I.: Some remarks on L-equivalence of algebraic varieties. Selecta Math. (N.S.) 24(4), 3753–3762 (2018)

  23. Ekedahl, T.: The Grothendieck group of algebraic stacks, arXiv:0903.3143 (2009)

  24. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Faltings, G., Wüstholz, G., (eds.), Rational points, Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig; distributed by Heyden & Son, Inc., Philadelphia, PA, 1984, Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn (1983/1984)

  26. Gillet, H., Soulé, C.: Descent, motives and \(K\)-theory. J. Reine Angew. Math. 478, 127–176 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points. Michigan Math. J. 54(2), 353–359 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Heinloth, F.: A note on functional equations for zeta functions with values in Chow motives. Ann. Inst. Fourier (Grenoble) 57(6), 1927–1945 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. Math. (2) 79, 109–203 (1964)

    MathSciNet  MATH  Google Scholar 

  30. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. II. Ann. Math. (2) 79, 205–326 (1964)

    MathSciNet  MATH  Google Scholar 

  31. Hochschild, G., Kostant, B., Rosenberg, A.: Differential forms on regular affine algebras. Trans. Am. Math. Soc. 102, 383–408 (1962)

    MathSciNet  MATH  Google Scholar 

  32. Hassett, B., Lai, K.-W.: Cremona transformations and derived equivalences of K3 surfaces. Compos. Math. 154(7), 1508–1533 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Hosono, S., Lian, B.H., Oguiso, K., Yau, S.-T.: Fourier–Mukai partners of a \(K3\) surface of Picard number one. Vector bundles and representation theory (Columbia, MO, 2002), Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, pp. 43–55 (2003)

  34. Hosono, S., Lian, B.H., Oguiso, K., Yau, S.-T.: Fourier–Mukai number of a K3 surface, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, pp. 177–192 (2004)

  35. Honigs, K.: Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties, Proc. Amer. Math. Soc. 146, no. 3, 1005–1013, (2018). With an appendix by Jeffrey D. Achter, Sebastian Casalaina-Martin, Katrina Honigs, and Charles Vial

  36. Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  37. Inoue, D., Ito, A., Miura, M.: Complete intersection Calabi–Yau manifolds with respect to homogeneous vector bundles on grassmannians. Math. Zeitschrift 292(1), 677–703 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12, arXiv:1612.08497v1

  39. Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via \(G_2\)-Grassmannians. J. Algebraic Geom. 28(2), 245–250 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Ito, T.: Birational smooth minimal models have equal Hodge numbers in all dimensions, Calabi–Yau varieties and mirror symmetry (Toronto, ON, 2001), Fields Inst. Commun., vol. 38, Amer. Math. Soc., Providence, RI, pp. 183–194 (2003)

  41. Jannsen, U.: Motives, numerical equivalence, and semi-simplicity. Invent. Math. 107(3), 447–452 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Kahn, B.: Zeta functions and motives. Pure Appl. Math. Q. 5(1), 507–570 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Kawamata, Y.: Birational geometry and derived categories, Surveys in differential geometry 2017. Celebrating the 50th anniversary of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 22, Int. Press, Somerville, MA, pp. 291–317 (2018)

  44. Kapustka, G., Kapustka, M., Moschetti, R.: Equivalence of K3 surfaces from Verra threefolds, arXiv e-prints (2017), arXiv:1712.06958

  45. Kontsevich, M.: Notes on motives in finite characteristic, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, pp. 213–247 (2009)

  46. Kapustka, M., Rampazzo, M.: Torelli problem for Calabi-Yau threefolds with GLSM description. Commun. Number Theory Physics 13(4), 725–761 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Kuznetsov, A., Shinder, E.: Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics, arXiv:1612.07193v1

  48. Kuznetsov, A., Shinder, E.: Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics, Selecta Math. (N.S.) 24(4), 3475–3500 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Kuznetsov, A.: Homological projective duality for Grassmannians of lines, arXiv:math/0610957

  50. Kuznetsov, A.: Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds. J. Math. Soc. Japan 70(3), 1007–1013 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Laterveer, R.: On the motive of intersections of two Grassmannians in \(\mathbb{P}^9\), Res. Math. Sci. 5 (2018), no. 3, Paper No. 29, 24

  52. Laterveer, R.: On the motive of Kapustka–Rampazzo’s Calabi–Yau threefolds, to appear in Hokkaido Mathematical Journal (2018), arXiv:1808.08338

  53. Laterveer, R., On the motive of Ito–Miura–Okawa–Ueda Calabi–Yau Threefolds, Tokyo J. Advance publication, Math. (2019)

  54. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    MathSciNet  MATH  Google Scholar 

  55. Manivel, L.: Double spinor Calabi–Yau varieties, Épijournal Geom. Algébrique 3, Art. 2, 14 (2019)

  56. Martin, N.: The class of the affine line is a zero divisor in the Grothendieck ring: an improvement. C. R. Math. Acad. Sci. Paris 354(9), 936–939 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Meachan, C., Mongardi, G., Yoshioka, K.: Derived equivalent Hilbert schemes of points on K3 surfaces which are not birational. Mathematische Zeitschrift 294(3–4), 871–880 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Murre, J.P., Nagel, J., Peters, C.A.M.: Lectures on the theory of pure motives, University Lecture Series, vol. 61, American Mathematical Society, Providence, RI (2013)

  59. Mukai, S.: Duality between \(D(X)\) and \(D({\hat{X}})\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    MathSciNet  MATH  Google Scholar 

  60. Mukai, S.: Curves, \(K3\) surfaces and Fano \(3\)-folds of genus \(\le 10\), Algebraic geometry and commutative algebra. Tokyo, Kinokuniya. vol. I, pp. 357–377 (1988)

  61. Mukai, S.: Polarized \(K3\) surfaces of genus \(18\) and \(20\), Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, pp. 264–276 (1992)

  62. Mukai, S.: Duality of polarized \(K3\) surfaces, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, pp. 311–326 (1999)

  63. Oguiso, K.: K3 surfaces via almost-primes. Math. Res. Lett. 9(1), 47–63 (2002)

    MathSciNet  MATH  Google Scholar 

  64. Okawa, S.: An example of birationally inequivalent projective symplectic varieties which are \(D\)-equivalent and \(L\)-equivalent. Mathematische Zeitschrift (2020)

  65. Ottem, J.C., Rennemo, J.V.: A counterexample to the birational Torelli problem for Calabi-Yau threefolds. J. Lond. Math. Soc. (2) 97(3), 427–440 (2018)

    MathSciNet  MATH  Google Scholar 

  66. Orlov, D.O.: Derived categories of coherent sheaves on abelian varieties and equivalences between them. Izv. Ross. Akad. Nauk Ser. Mat. 66(3), 131–158 (2002)

    MathSciNet  MATH  Google Scholar 

  67. Orlov, D.O.: Derived categories of coherent sheaves, and motives. Uspekhi Mat. Nauk 60(6(366)), 231–232 (2005)

    MathSciNet  MATH  Google Scholar 

  68. Ploog, D.: Equivariant autoequivalences for finite group actions. Adv. Math. 216(1), 62–74 (2007)

    MathSciNet  MATH  Google Scholar 

  69. Poonen, B.: Mathoverflow, http://mathoverflow.net/questions/16992/non-principally-polarized-complex-abelian-varieties

  70. Popa, M., Schnell, C.: Derived invariance of the number of holomorphic 1-forms and vector fields. Ann. Sci. Éc. Norm. Supér. (4) 44(3), 527–536 (2011)

    MathSciNet  MATH  Google Scholar 

  71. Rødland, E.A.: The Pfaffian Calabi-Yau, its mirror, and their link to the Grassmannian \(G(2,7)\). Compositio Math. 122(2), 135–149 (2000)

    MathSciNet  MATH  Google Scholar 

  72. Ramachandran, N., Tabuada, G.: Exponentiable motivic measures. J. Ramanujan Math. Soc. 30(4), 349–360 (2015)

    MathSciNet  MATH  Google Scholar 

  73. Richard, G.: Swan, Hochschild cohomology of quasiprojective schemes. J. Pure Appl. Algebra 110(1), 57–80 (1996)

    MathSciNet  MATH  Google Scholar 

  74. Shinder, E., Zhang, Z.: L-equivalence for degree five elliptic curves, elliptic fibrations and K3 surfaces, arXiv e-prints (2019), arXiv:1907.01335

  75. Tabuada, G.: Invariants additifs de DG-catégories, Int. Math. Res. Not. (53):3309–3339 (2005)

  76. Tabuada, G.: Chow motives versus noncommutative motives. J. Noncommut. Geom. 7(3), 767–786 (2013)

    MathSciNet  MATH  Google Scholar 

  77. Tregub, S.L.: Three constructions of rationality of a cubic fourfold, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (3):8–14 (1984)

  78. Ueda, K.: \(G_2\)-Grassmannians and derived equivalences. Manuscripta Math. 159(3–4), 549–559 (2019)

    MathSciNet  MATH  Google Scholar 

  79. Yekutieli, A.: The continuous Hochschild cochain complex of a scheme. Canad. J. Math. 54(6), 1319–1337 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Kenji Hashimoto and Daisuke Inoue for collaboration at an early stage of this work; this note is originally conceived as a joint project with them. We also thank Genki Ouchi for Remark 5.1 and the reference [13], and Kota Yoshioka for the reference [33]. We also thank Yujiro Kawamata, Keiji Oguiso, Evgeny Shinder, Hokuto Uehara, and Takehiko Yasuda for useful discussions. We also thank the anonymous referees for reading the manuscript carefully and suggesting a number of improvements. A. I. was supported by Grants-in-Aid for Scientific Research (14J01881,17K14162). M. M. was supported by Korea Institute for Advanced Study. S. O. was partially supported by Grants-in-Aid for Scientific Research (16H05994, 16K13746, 16H02141, 16K13743, 16K13755, 16H06337, 18H01120) and the Inamori Foundation. K. U. was partially supported by Grants-in-Aid for Scientific Research (24740043, 15KT0105, 16K13743, 16H03930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Miura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, A., Miura, M., Okawa, S. et al. Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties. Sel. Math. New Ser. 26, 38 (2020). https://doi.org/10.1007/s00029-020-00561-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00561-x

Mathematics Subject Classification

Navigation