Skip to main content
Log in

Uniform description of the rigged configuration bijection

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We give a uniform description of the bijection \(\Phi \) from rigged configurations to tensor products of Kirillov–Reshetikhin crystals of the form \(\bigotimes _{i=1}^N B^{r_i,1}\) in dual untwisted types: simply-laced types and types \(A_{2n-1}^{(2)}\), \(D_{n+1}^{(2)}\), \(E_6^{(2)}\), and \(D_4^{(3)}\). We give a uniform proof that \(\Phi \) is a bijection and preserves statistics. We describe \(\Phi \) uniformly using virtual crystals for all remaining types, but our proofs are type-specific. We also give a uniform proof that \(\Phi \) is a bijection for \(\bigotimes _{i=1}^N B^{r_i,s_i}\) when \(r_i\), for all i, map to 0 under an automorphism of the Dynkin diagram. Furthermore, we give a description of the Kirillov–Reshetikhin crystals \(B^{r,1}\) using tableaux of a fixed height \(k_r\) depending on r in all affine types. Additionally, we are able to describe crystals \(B^{r,s}\) using \(k_r \times s\) shaped tableaux that are conjecturally the crystal basis for Kirillov–Reshetikhin modules for various nodes r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Our results also include type \(A_n^{(1)}\), where we instead have \(B^{1,1} \otimes B^{n,1}\) as the atomic object.

  2. To obtain the formulas of [20, 22], we need to substitute \(q = q^{-1}\).

  3. A map for when the left factor is \(B^{2,1}\) of type \(E_6^{(1)}\) was conjectured in [4].

  4. Note that if \(\ell _{j-1} = 1\) and there exists a singular row of length 1, then we would not be in this case as \(i_a = 1 < \max \{\ell _{j-1},2\} = 2\).

  5. Recall that \(\delta _r^{\star }\) in [89], where it was denoted by \({\text {rh}}\), was defined by removing the rightmost factor (and then going to the highest weight element) in contrast to our definition of conjugating the left factor removal by \(\star \). However, these definitions are equivalent by [89, Prop. 5.9(5)].

  6. From the definition of \({{\,\mathrm{lb}\,}}\) and that \({{\,\mathrm{lb}\,}}\) preserves vacancy numbers, we can consider \(\widetilde{\delta } \circ {{\,\mathrm{lb}\,}}\) as one operation that is the same as \(\widetilde{\delta }\) except that it begins at \(\nu ^{(r)}\) instead of \(\nu ^{(1)}\).

References

  1. Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, (1989). Reprint of the 1982 original

  2. Benkart, G., Frenkel, I., Kang, S.-J., Lee, H.: Level 1 perfect crystals and path realizations of basic representations at \(q=0\). Int. Math. Res. Not., pages Art. ID 10312, 28 (2006)

  3. Mohammad, M.: Scattering rules in soliton cellular automata associated with \(U_q(D_n^{(1)})\)-crystal \(B^{n,1}\). J. Phys. A 45(7), 075208, 22 (2012)

    Google Scholar 

  4. Mohammad, M.B.: Soliton cellular automata constructed from a\(U_q(\mathfrak{g})\)-Crystal \(B^{n,1}\) and Kirillov-Reshetikhin typebijection for \(U_q(E_6^{(1)})\)-Crystal \(B^{6,1}\). Ph.D. Thesis, Osaka University (2012)

  5. Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Chari, V.: Minimal affinizations of representations of quantum groups: the rank \(2\) case. Publ. Res. Inst. Math. Sci. 31(5), 873–911 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Chari, V.: On the fermionic formula and the Kirillov-Reshetikhin conjecture. Int. Math. Res. Not. IMRN 12, 629–654 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Chari, V., Pressley, A.: Minimal affinizations of representations of quantum groups: the nonsimply-laced case. Lett. Math. Phys. 35(2), 99–114 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Chari, V., Pressley, A.: Quantum affine algebras and their representations. In: Representations of groups (Banff, AB, 1994), volume 16 of CMS Conference in Proceedings, pp. 59–78. American Mathematical Society, Providence, RI (1995)

  10. Chari, V., Pressley, A.: Minimal affinizations of representations of quantum groups: the irregular case. Lett. Math. Phys. 36(3), 247–266 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Chari, V., Pressley, A.: Minimal affinizations of representations of quantum groups: the simply laced case. J. Algebra 184(1), 1–30 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Chari, V., Pressley, A.: Twisted quantum affine algebras. Commun. Math. Phys. 196(2), 461–476 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Cliff, G.: Crystal bases and Young tableaux. J. Algebra 202(1), 10–35 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Deka, L., Schilling, A.: New fermionic formula for unrestricted Kostka polynomials. J. Combin. Theory Ser. A 113(7), 1435–1461 (2006)

    MathSciNet  MATH  Google Scholar 

  15. The Sage Developers. Sage Mathematics Software (Version 8.4). The Sage Development Team (2018). http://www.sagemath.org

  16. Fourier, G., Okado, M., Schilling, A.: Kirillov-Reshetikhin crystals for nonexceptional types. Adv. Math. 222(3), 1080–1116 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Fourier, G., Okado, M., Schilling, A.: Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types. Contemp. Math. 506, 127–143 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Fourier, G., Schilling, A., Shimozono, M.: Demazure structure inside Kirillov-Reshetikhin crystals. J. Algebra 309(1), 386–404 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebrasand deformations of \({W}\)-algebras. In: Recent developments in quantum affine algebras and relatedtopics (Raleigh, NC, 1998), volume 248 of Contempation Mathmatics, pp. 163–205. American Mathematical Society, Providence, RI (1999)

  20. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on fermionic formula. In: Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), volume 248 of Contemption Mathematic, pp. 243–291. American Mathematical Society, Providence, RI (1999)

  21. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Scattering rules in soliton cellular automata associated with crystal bases. In: Recent developments in infinite-dimensional Lie algebras and conformal field theory (Charlottesville, VA, 2000), volume 297 of Contemption Mathematic, pp. 151–182. American Mathematical Society, Providence, RI (2002)

  22. Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Tsuboi, Z.: Paths, crystals and fermionic formulae. In: MathPhys odyssey, 2001, volume 23 of Progress in Mathematical Physics, pp. 205–272. Birkhäuser, Boston (2002)

  23. Hatayama, G., Kuniba, A., Takagi, T.: Soliton cellular automata associated with crystal bases. Nuclear Phys. B 577(3), 619–645 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Hernandez, D.: The Kirillov-Reshetikhin conjecture and solutions of \(T\)-systems. J. Reine Angew. Math. 596, 63–87 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Hernandez, D.: Kirillov-Reshetikhin conjecture: the general case. Int. Math. Res. Not. IMRN 1, 149–193 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Hernandez, D., Nakajima, H.: Level 0 monomial crystals. Nagoya Math. J. 184, 85–153 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Hong, J., Lee, H.: Young tableaux and crystal \(\cal{B}(\infty )\) for finite simple Lie algebras. J. Algebra 320(10), 3680–3693 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  29. Jimbo, M., Miwa, T.: On a duality of branching rules for affine Lie algebras. In: Algebraic groups and related topics (Kyoto/Nagoya, 1983), volume 6 of Advanced Studies in Pure Mathematics, pp. 17–65. North-Holland, Amsterdam (1985)

  30. Jones, B., Schilling, A.: Affine structures and a tableau model for \(E_6\) crystals. J. Algebra 324(9), 2512–2542 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  32. Kang, S.-J., Kashiwara, M., Misra, K.C.: Crystal bases of Verma modules for quantum affine Lie algebras. Compos. Math. 92(3), 299–325 (1994)

    MathSciNet  MATH  Google Scholar 

  33. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Affine crystals and vertex models. In: Infinite analysis, Part A, B (Kyoto, 1991), volume 16 of Advanced Series in Mathematics Physics, pp. 449–484. World Scientific Publishing, River Edge, NJ (1992)

  34. Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T., Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J. 68(3), 499–607 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Kashiwara, M., Misra, K.C., Okado, M., Yamada, D.: Perfect crystals for \(U_q(D^{(3)}_4)\). J. Algebra 317(1), 392–423 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Kashiwara, M.: Crystalizing the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys. 133(2), 249–260 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Kerov, S.V., Kirillov, A.N., Yu, N.: Reshetikhin. Combinatorics, the Bethe ansatz and representations of the symmetric group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155, 50–64 (1986)

    MATH  Google Scholar 

  42. Kirillov, A.N., Yu, N.: Reshetikhin. The Bethe ansatz and the combinatorics of Young tableaux. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155, 65–115 (1986)

    MATH  Google Scholar 

  43. Kirillov, A.N.: Schilling, Anne, Shimozono, Mark: A bijection between Littlewood-Richardson tableaux and rigged configurations. Selecta Math. (N.S.) 8(1), 67–135 (2002)

    MathSciNet  MATH  Google Scholar 

  44. Kleber, M.S.: Finite dimensional representations of quantum affine algebras. ProQuest LLC, Ann Arbor, MI, 1998. Ph.D. Thesis, University of California, Berkeley

  45. Kodera, R.: A generalization of adjoint crystals for the quantized affine algebras of type \(A^{(1)}_n\), \(C^{(1)}_n\) and \(D^{(2)}_{n+1}\). J. Algebraic Combin. 30(4), 491–514 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Y.: Crystal interpretation of Kerov-Kirillov-Reshetikhin bijection. Nuclear Phys. B 740(3), 299–327 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Kuniba, A., Sakamoto, R., Yamada, Y.: Tau functions in combinatorial Bethe ansatz. Nuclear Phys. B 786(3), 207–266 (2007)

    MathSciNet  MATH  Google Scholar 

  48. Lam, T., Pylyavskyy, P., Sakamoto, R.: Rigged configurations and cylindric loop Schur functions. Ann. Inst. Henri Poincaré D 5(4), 513–555 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Lenart, C., Lubovsky, A.: A uniform realization of the combinatorial \(R\)-matrix. Adv. Math. 334, 151–183 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Lenart, C., Lubovsky, A.: A generalization of the alcove model and its applications. J. Algebraic Combin. 41(3), 751–783 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph. Int. Math. Res. Not. IMRN 7, 1848–1901 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: Quantum Lakshmibai-Seshadri paths and root operators. Adv. Stud. Pure Math. 71, 267–294 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals II. Alcove model, path model, and \(P=X\). Int. Math. Res. Not. IMRN (2016)

  54. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals III: Nonsymmetric Macdonald polynomials at \(t=0\) and Demazure characters. Transformation Groups, pp. 1–39 (2017)

  55. Littelmann, P.: The path model for representations of symmetrizable Kac-Moody algebras. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 298–308, Birkhäuser, Basel (1995)

  56. Littelmann, P.: Paths and root operators in representation theory. Ann. Math. 142(3), 499–525 (1995)

    MathSciNet  MATH  Google Scholar 

  57. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    MathSciNet  MATH  Google Scholar 

  58. Misra, K.C., Okado, M., Wilson, E.A.: Soliton cellular automaton associated with \(G^{(1)}_2\) crystal base. J. Math. Phys. 53(1), 013510, 21 (2012)

    MATH  Google Scholar 

  59. Naito, S., Sagaki, D.: Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras. Commun. Math. Phys. 263(3), 749–787 (2006)

    MathSciNet  MATH  Google Scholar 

  60. Naito, S., Sagaki, D.: Crystal structure on the set of Lakshmibai-Seshadri paths of an arbitrary level-zero shape. Proc. Lond. Math. Soc. 96(3), 582–622 (2008)

    MathSciNet  MATH  Google Scholar 

  61. Naito, S., Sagaki, D.: Lakshmibai-Seshadri paths of level-zero shape and one-dimensional sums associated to level-zero fundamental representations. Compos. Math. 144(6), 1525–1556 (2008)

    MathSciNet  MATH  Google Scholar 

  62. Nakajima, H.: \(t\)-analogue of the \(q\)-characters of finite dimensional representations of quantum affine algebras. Physics and combinatorics. 2000 (Nagoya), pp. 196–219. World Scientific Publishing, River Edge, NJ (2001)

  63. Nakajima, H.: \(t\)-analogs of \(q\)-characters of quantum affine algebras of type \(A_n,D_n\). In: Combinatorial and geometric representation theory (Seoul, 2001), volume 325 of Contemption Mathmatical, pp. 141–160. American Mathematical Society, Providence, RI (2003)

  64. Nakajima, H.: \(t\)-analogs of \(q\)-characters of quantum affine algebras of type \(E_6,E_7,E_8\). In: Representation theory of algebraic groups and quantum groups, volume 284 of Progress in Mathematical, pp. 257–272. Springer, New York (2010)

  65. Naoi, K.: Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229(2), 875–934 (2012)

    MathSciNet  MATH  Google Scholar 

  66. Naoi, K.: Existence of Kirillov-Reshetikhin crystals of type \(G_2^{(1)}\) and \(D_4^{(3)}\). J. Algebra 56, 47–65 (2018)

    MathSciNet  MATH  Google Scholar 

  67. Okado, M.: Existence of crystal bases for Kirillov-Reshetikhin modules of type \(D\). Publ. Res. Inst. Math. Sci. 43(4), 977–1004 (2007)

    MathSciNet  MATH  Google Scholar 

  68. Okado, M.: Simplicity and similarity of Kirillov-Reshetikhin crystals. In: Recent developments in algebraic and combinatorial aspects of representation theory, volume 602 of Contemption Mathmatics, pp. 183–194. American Mathematical Society, Providence, RI (2013)

  69. Okado, M., Sakamoto, R., Schilling, A.: Affine crystal structure on rigged configurations of type \(D_n^{(1)}\). J. Algebraic Combin. 37(3), 571–599 (2013)

    MathSciNet  MATH  Google Scholar 

  70. Okado, M., Sakamoto, R., Schilling, A., Scrimshaw, T.: Type \(D_n^{(1)}\) rigged configuration bijection. J. Algebraic Combin. 46(2), 341–401 (2017)

    MathSciNet  MATH  Google Scholar 

  71. Okado, M., Sano, N.: KKR type bijection for the exceptional affine algebra \(E_6^{(1)}\). In: Algebraic groups and quantum groups, volume 565 of Contemption Mathematics, pp. 227–242. American Mathematical Society, Providence, RI (2012)

  72. Okado, M., Schilling, A.: Existence of Kirillov-Reshetikhin crystals for nonexceptional types. Represent. Theory 12, 186–207 (2008)

    MathSciNet  MATH  Google Scholar 

  73. Okado, M., Schilling, A., Scrimshaw, T.: Rigged configuration bijection and proof of the \(X=M\) conjecture for nonexceptional affine types. J. Algebra 516, 1–37 (2018)

    MathSciNet  MATH  Google Scholar 

  74. Okado, M., Schilling, A., Shimozono, M.: A crystal to rigged configuration bijection for nonexceptional affine algebras. In: Algebraic combinatorics and quantum groups, pp. 85–124. World Scientific Publishing, River Edge, NJ (2003)

  75. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and fermionic formulas of type \(D^{(2)}_{n+1}, A^{(2)}_{2n}\), and \(C^{(1)}_n\). Represent. Theory 7((electronic), 101–163 (2003)

    MathSciNet  MATH  Google Scholar 

  76. Okado, M., Schilling, A., Shimozono, M.: Virtual crystals and Kleber’s algorithm. Commun. Math. Phys. 238(1–2), 187–209 (2003)

    MathSciNet  MATH  Google Scholar 

  77. Pan, J., Scrimshaw, T.: Virtualization map for the Littelmann path model. Transform. Groups 23(4), 1045–1061 (2018)

    MathSciNet  MATH  Google Scholar 

  78. Proctor, R.A.: Minuscule elements of Weyl groups, the numbers game, and \(d\)-complete posets. J. Algebra 213(1), 272–303 (1999)

    MathSciNet  MATH  Google Scholar 

  79. The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, (2008). http://combinat.sagemath.org

  80. Sakamoto, R.: Kirillov-Schilling-Shimozono bijection as energy functions of crystals. Int. Math. Res. Not. IMRN 4, 579–614 (2009)

    MathSciNet  MATH  Google Scholar 

  81. Sakamoto, R.: Rigged configurations and Kashiwara operators. SIGMA Symm. Integr. Geom. Methods Appl. 10, 88 (2014)

    MathSciNet  MATH  Google Scholar 

  82. Salisbury, B., Scrimshaw, T.: A rigged configuration model for \(B(\infty )\). J. Combin. Theory Ser. A 133, 29–57 (2015)

    MathSciNet  MATH  Google Scholar 

  83. Salisbury, B., Scrimshaw, T.: Connecting marginally large tableaux and rigged configurations. Algebr. Represent. Theory 19(3), 523–546 (2016)

    MathSciNet  MATH  Google Scholar 

  84. Salisbury, B., Scrimshaw, T.: Rigged configurations for all symmetrizable types. Electron. J. Combin. 24(1), 30 (2017)

    MathSciNet  MATH  Google Scholar 

  85. Salisbury, B., Scrimshaw, T.: Rigged configurations and the \(\ast \)-involution. Lett. Math. Phys. 108(9), 1985–2007 (2018)

    MathSciNet  MATH  Google Scholar 

  86. Schilling, A.: A bijection between type \(D^{(1)}_n\) crystals and rigged configurations. J. Algebra 285(1), 292–334 (2005)

    MathSciNet  MATH  Google Scholar 

  87. Schilling, A.: Crystal structure on rigged configurations. Int. Math. Res. Not. 97376, 27 (2006)

    MathSciNet  MATH  Google Scholar 

  88. Schilling, A., Scrimshaw, T.: Crystal structure on rigged configurations and the filling map for non-exceptional affine types. Electron. J. Combin. 22(1), 73 (2015)

    MATH  Google Scholar 

  89. Schilling, A., Shimozono, M.: \(X=M\) for symmetric powers. J. Algebra 295(2), 562–610 (2006)

    MathSciNet  MATH  Google Scholar 

  90. Schilling, A., Sternberg, P.: Finite-dimensional crystals \(B^{2, s}\) for quantum affine algebras of type \(D^{(1)}_n\). J. Algebraic Combin. 23(4), 317–354 (2006)

    MathSciNet  MATH  Google Scholar 

  91. Schilling, A., Tingely, P.: Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function. Electron. J. Combin. 19(2), 4 (2012)

    MathSciNet  Google Scholar 

  92. Schilling, A., Wang, Q.: Promotion operator on rigged configurations of type \(A\). Electron. J. Combin. 17(1), 24 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Scrimshaw, T.: A crystal to rigged configuration bijection and the filling map for type \(D_4^{(3)}\). J. Algebra 448C, 294–349 (2016)

    MathSciNet  MATH  Google Scholar 

  94. Scrimshaw, T.: Rigged configurations as tropicalizations of loop Schur functions. J. Integrable Syst. 2(1), 56 (2017)

    MathSciNet  MATH  Google Scholar 

  95. Stembridge, J.R.: Minuscule elements of Weyl groups. J. Algebra 235(2), 722–743 (2001)

    MathSciNet  MATH  Google Scholar 

  96. Stembridge, J.R.: Multiplicity-free products and restrictions of Weyl characters. Represent. Theory 7(electronic), 404–439 (2003)

    MathSciNet  MATH  Google Scholar 

  97. Takagi, T.: Inverse scattering method for a soliton cellular automaton. Nuclear Phys. B 707(3), 577–601 (2005)

    MathSciNet  MATH  Google Scholar 

  98. Yamada, D.: Box ball system associated with antisymmetric tensor crystals. J. Phys. A 37(42), 9975–9987 (2004)

    MathSciNet  MATH  Google Scholar 

  99. Yamada, D.: Scattering rule in soliton cellular automaton associated with crystal base of \(U_q(D^{(3)}_4)\). J. Math. Phys. 48(4), 043509, 28 (2007)

    MATH  Google Scholar 

  100. Yamane, S.: Perfect crystals of \(U_q(G^{(1)}_2)\). J. Algebra 210(2), 440–486 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Masato Okado for the reference [4] and useful discussions. The author would like to thank Anne Schilling for useful discussions. The author would like to thank Ben Salisbury for comments on an early draft of this paper. The author would like to thank the referee for their useful comments. This work benefited from computations using SageMath [15, 79].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Scrimshaw.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author was partially supported by the National Science Foundation RTG grant NSF/DMS-1148634.

Appendices

Appendix A: KR tableaux for fundamental weights

In this section, we list the classically highest weight KR tableaux for \(B^{r,1}\) for types \(E_{6,7,8}^{(1)}\), \(E_6^{(2)}\), \(F_4^{(1)}\), and \(G_2^{(1)}\).

Recall that highest weight rigged configurations must have \(0 \le p_i^{(a)}\) for all \((a,i) \in \mathcal {H}_0\). Moreover, all rigged configurations in this section will have \(p_i^{(a)} = 0\) except for possibly one \((b, j) \in \mathcal {H}_0\) where \(p_j^{(b)} = 1\). Therefore we describe the rigged configuration simply by its configuration \(\nu \) and if \(p_i^{(a)} = 1\), then we write the corresponding rigging x as the subscript (x). We also write the column tableau \( \begin{aligned} \hline x_1 &{} x_2 &{} x_3 &{} \cdots &{} x_r \\ \hline \end{aligned}^{t} \) as \([x_1, x_2, x_3, \dotsc , x_r]\).

Example A.1

In type \(E_7^{(1)}\) for \(B^{4,1}\), we denote the rigged configuration

figure f

by \((1, 11, 1_{(1)} 1_{(0)}, 1111, 111, 11, 1)\) or more compactly \((1, 1^2, 1^2_{(1,0)}, 1^4, 1^3, 1^2, 1)\).

In the remaining part of this section, we give the KR tableaux for \(B^{r,1}\) for the exceptional types (except for \(r = 4, 5\) in type \(E_8^{(1)}\), which can be generated using SageMath [15]).

1.1 A.1. Type \(E_6^{(1)}\)

\(r=1\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1] \end{aligned}$$

\(r=2\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}6, 2 \overline{6}] \\ (1, 1^2, 1^2, 1^3, 1^2, 1)\mapsto & {} [1, \overline{1}6, \overline{6}] \end{aligned}$$

\(r=3\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}3] \\ (1, 1, 1^2, 1^2, 1, \emptyset )\mapsto & {} [1, \overline{1}6] \end{aligned}$$

\(r=4\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}3, \overline{3}4] \\ (\emptyset , 1, 1, 1^2, 1, \emptyset )\mapsto & {} [1, \overline{1}3, 1 \overline{3}6] \\ (1, 1_{(0)}, 1, 1^3, 1^2, 1)\mapsto & {} [1, \overline{1}6, 2\overline{6}] \\ (1, 1_{(1)}, 1^2, 1^3, 1^2, 1)\mapsto & {} [1, \overline{1}3, 2 \overline{3}] \\ (1^2, 1^3, 1^4, 1^6, 1^4, 1^2)\mapsto & {} [1, \overline{1}6, \overline{6}] \end{aligned}$$

\(r=5\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}6, 2 \overline{6}, \overline{2}5] \\ (\emptyset , 1, 1, 1^2, 1^2, 1)\mapsto & {} [1, \overline{1}6, 2 \overline{6}, 1 \overline{2}] \end{aligned}$$

\(r=6\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}6] \end{aligned}$$

1.2 A.2. Type \(E_7^{(1)}\)

\(r=1\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7, 1 \overline{7}] \\ (1^2, 1^2, 1^3, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, \overline{7}] \end{aligned}$$

\(r=2\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7, 1 \overline{7}, \overline{1}2] \\ (1, 1^2, 1^2, 1^3, 1^2, 1, \emptyset )\mapsto & {} [7, 1 \overline{7}, \overline{1}7] \end{aligned}$$

\(r=3\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7, 1 \overline{7}, \overline{1}2, \overline{2}3] \\ (1, 1, 1^2, 1^2, 1, \emptyset , \emptyset )\mapsto & {} [7, 1 \overline{7}, \overline{1}2, \overline{2}6] \\ (1_{(0)}, 1^2, 1^3, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, 1 \overline{7}, \overline{1}7, 1 \overline{7}] \\ (1_{(1)}, 1^2, 1^3, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, 1 \overline{7}, \overline{1}2, 1 \overline{2}] \\ (1^3, 1^4, 1^6, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [7, 1 \overline{7}, \overline{1}7, \overline{7}] \end{aligned}$$

\(r=4\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7, 6 \overline{7}, 5 \overline{6}, 4 \overline{5}] \\ (\emptyset , 1, 1, 1^2, 1, \emptyset , \emptyset )\mapsto & {} [7, 6 \overline{7}, 5 \overline{6}, 1 \overline{5}6] \\ (\emptyset , 1^2, 1^2, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, 6 \overline{7}, 1 \overline{6}7, 1 \overline{7}] \\ (1, 1_{(0)}, 1^2, 1^3, 1^2, 1, \emptyset )\mapsto & {} [7, 6 \overline{7}, 1 \overline{6}7, \overline{1}2] \\ (1, 1_{(1)}, 1^2, 1^3, 1^2, 1, \emptyset )\mapsto & {} [7, 6 \overline{7}, 5 \overline{6}, 2 \overline{5}7] \\ (1, 1^2, 1^2_{(0,0)}, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, 1 \overline{7}, \overline{1}2, \overline{2}3] \\ (1, 1^2, 1^2_{(1,0)}, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, 6 \overline{7}, 1 \overline{6}7, \overline{1}3 \overline{7}] \\ (1, 1^2, 1^2_{(1,1)}, 1^4, 1^3, 1^2, 1)\mapsto & {} [7, 6 \overline{7}, 5 \overline{6}, 3 \overline{5}] \\ (1^2, 1^3, 1^4, 1^6, 1^4, 1^2, \emptyset )\mapsto & {} [7, 6 \overline{7}, 1\overline{6}7, \overline{1}7] \\ (1^2, 1^3, 1^4, 1^6, 1^4, 1^2_{(0,0)}, 1)\mapsto & {} [7, 1 \overline{7}, \overline{1}2, \overline{2}6] \\ (1^2, 1^3, 1^4, 1^6, 1^4, 1^2_{(1,0)}, 1)\mapsto & {} [7, 6 \overline{7}, 1 \overline{6}7, \overline{1}6 \overline{7}] \\ (1^2, 1^3, 1^4, 1^6, 1^4, 1^2_{(1,1)}, 1)\mapsto & {} [7, 6 \overline{7}, 5 \overline{6}, \overline{5}6] \\ (1^2_{(0,0)}, 1^4, 1^5, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [7, 1 \overline{7}, \overline{1}7, 1 \overline{7}] \\ (1^2_{(1,0)}, 1^4, 1^5, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [7, 1 \overline{7}, \overline{1}2, 1 \overline{2}] \\ (1^2_{(1,1)}, 1^4, 1^5, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [7, 6 \overline{7}, 1 \overline{6}7, \overline{7}] \\ (1^4, 1^6, 1^8, 1^{12}, 1^9, 1^6, 1^3)\mapsto & {} [7, 1 \overline{7}, \overline{1}7, \overline{7}] \\ (2, 21, 2^2, 2^2 1^2, 2 1^2, 1^2, 1)\mapsto & {} [7, 6 \overline{7}, 2 \overline{6}, \overline{2}6] \\ (1^2, 2 1^2, 2 1^3, 2^2 1^4, 2^2 1^2, 2^2, 2)\mapsto & {} [7, 6 \overline{7}, 2 \overline{6}, \overline{2}1] \\ (2^2, 2^2 1^2, 2^3 1^2, 2^4 1^4, 2^3 1^3, 2^2 1^2, 21)\mapsto & {} [7, 6 \overline{7}, \overline{6}7, \overline{7}] \end{aligned}$$

\(r=5\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7, 6 \overline{7}, 5\overline{6}] \\ (\emptyset , 1, 1, 1^2, 1^2, 1, \emptyset )\mapsto & {} [7, 6 \overline{7}, 1 \overline{6}7] \\ (1, 1_{(0)}, 1^2, 1^3, 1^3, 1^2, 1)\mapsto & {} [7, 1 \overline{7}, \overline{1}2] \\ (1, 1_{(1)}, 1^2, 1^3, 1^3, 1^2, 1)\mapsto & {} [7, 6 \overline{7}, 2\overline{6}] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^3, 1_{(0)})\mapsto & {} [7, 1 \overline{7}, \overline{1}7] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^3, 1_{(1)})\mapsto & {} [7, 6 \overline{7}, \overline{6}7] \end{aligned}$$

\(r=6\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7, 6 \overline{7}] \\ (\emptyset , 1, 1, 1^2, 1^2, 1^2, 1)\mapsto & {} [7, 1 \overline{7}] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^2)\mapsto & {} [7, \overline{7}] \end{aligned}$$

\(r=7\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [7] \end{aligned}$$

1.3 A.3. Type \(E_8^{(1)}\)

\(r=1\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [8, 1\overline{8}] \\ (1^2, 1^2, 1^3, 1^4, 1^3, 1^2, 1, \emptyset )\mapsto & {} [8, \emptyset ] \\ (1^4, 1^5, 1^7, 1^{10}, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [\emptyset , \emptyset ] \end{aligned}$$

\(r=2\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}2] \\ (1, 1^2, 1^2, 1^3, 1^2, 1, \emptyset , \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}7] \\ (1_{(0)}, 1^3, 1^3, 1^5, 1^4, 1^3, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}1] \\ (1_{(1)}, 1^3, 1^3, 1^5, 1^4, 1^3, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \emptyset ] \\ (1^3, 1^5, 1^6, 1^9, 1^7, 1^5, 1^3, 1_{(0)})\mapsto & {} [8, \emptyset , 8\overline{8}] \\ (1^3, 1^5, 1^6, 1^9, 1^7, 1^5, 1^3, 1_{(1)})\mapsto & {} [8, \emptyset , \emptyset ] \\ (1^5, 1^8, 1^{10}, 1^{15}, 1^{12}, 1^9, 1^6, 1^3)\mapsto & {} [\emptyset , \emptyset , \emptyset ] \end{aligned}$$

\(r=3\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}2, \overline{2}3] \\ (1, 1, 1^2, 1^2, 1, \emptyset , \emptyset , \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}2, \overline{2}6] \\ (1_{(0)}, 1^2, 1^3, 1^4, 1^3, 1^2, 1, \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}7, 1\overline{7}8] \\ (1_{(1)}, 1^2, 1^3, 1^4, 1^3, 1^2, 1, \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}2, 1\overline{2}8] \\ (1^2, 1^2_{(0,0)}, 1^4, 1^5, 1^4, 1^3, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}7, 2 \overline{7}] \\ (1^2, 1^2_{(1,0)}, 1^4, 1^5, 1^4, 1^3, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}2, \overline{2}2] \\ (1^2, 1^2_{(1,1)}, 1^4, 1^5, 1^4, 1^3, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}2, \emptyset ] \\ (1^3, 1^4, 1^6, 1^8, 1^6, 1^4, 1^2, \emptyset )\mapsto & {} [8, 1\overline{8}, \overline{1}7, \overline{7}8 8] \\ (1^3, 1^4, 1^6, 1^8, 1^6, 1^4, 1^2_{(0,0)}, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}1, \overline{1}7] \\ (1^3, 1^4, 1^6, 1^8, 1^6, 1^4, 1^2_{(1,0)}, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}7, \overline{7}7] \\ (1^3, 1^4, 1^6, 1^8, 1^6, 1^4, 1^2_{(1,1)}, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}7, \emptyset ] \\ (1^3_{(0,0,0)}, 1^5, 1^7, 1^{10}, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [8, \emptyset , \overline{8}8, 1 \overline{8}] \\ (1^3_{(1,0,0)}, 1^5, 1^7, 1^{10}, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [8, 1\overline{8}, \overline{1}1, \overline{1}1] \\ (1^3_{(1,1,0)}, 1^5, 1^7, 1^{10}, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [8, 1\overline{8}, \overline{1}1, \emptyset ] \\ (1^3_{(1,1,1)}, 1^5, 1^7, 1^{10}, 1^8, 1^6, 1^4, 1^2)\mapsto & {} [8, 1\overline{8}, \emptyset , \emptyset ] \\ (1^5, 1^7, 1^{10}, 1^{14}, 1^{11}, 1^8, 1^5, 1^2_{(0,0)})\mapsto & {} [8, \emptyset , \overline{8}8, \overline{8}8] \\ (1^5, 1^7, 1^{10}, 1^{14}, 1^{11}, 1^8, 1^5, 1^2_{(1,0)})\mapsto & {} [8, \emptyset , \overline{8}8, \emptyset ] \\ (1^5, 1^7, 1^{10}, 1^{14}, 1^{11}, 1^8, 1^5, 1^2_{(1,1)})\mapsto & {} [8, \emptyset , \emptyset , \emptyset ] \\ (1^7, 1^{10}, 1^{14}, 1^{20}, 1^{16}, 1^{12}, 1^8, 1^4)\mapsto & {} [\emptyset , \emptyset , \emptyset , \emptyset ] \\ (21, 2^2, 2^2 1^2, 2^3 1^2, 2^2 1^2, 21^2, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}2, \overline{2}7] \\ (1^3, 21^3, 21^5, 2^2 1^6, 2^2 1^4, 2^2 1^2, 2^2, 2)\mapsto & {} [8, 1\overline{8}, \overline{1}7, 1 \overline{7}] \\ (2^2 1_{(0)}, 2^2 1^3, 2^3 1^4, 2^4 1^6, 2^3 1^5, 2^2 1^4, 2 1^3, 1^2)\mapsto & {} [8, 1\overline{8}, \overline{1}1, \overline{1}8] \\ (2^2 1_{(1)}, 2^2 1^3, 2^3 1^4, 2^4 1^6, 2^3 1^5, 2^2 1^4, 2 1^3, 1^2)\mapsto & {} [8, 1\overline{8}, \emptyset , \overline{1}8] \\ (2^2 1^3, 2^3 1^4, 2^4 1^6, 2^6 1^8, 2^5 1^6, 2^4 1^4, 2^3 1^2, 2^2)\mapsto & {} [8, \emptyset , \emptyset , \overline{8}] \end{aligned}$$

\(r=6\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [8, 7\overline{8}, 6\overline{7}] \\ (\emptyset , 1, 1, 1^2, 1^2, 1^1, 1, \emptyset )\mapsto & {} [8, 7\overline{8}, 1\overline{7}8] \\ (1, 1_{(0)}, 1^2, 1^3, 1^3, 1^3, 1^2, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}2] \\ (1, 1_{(1)}, 1^2, 1^3, 1^3, 1^3, 1^2, 1)\mapsto & {} [8, 7\overline{8}, 2 \overline{7}] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^2, \emptyset )\mapsto & {} [8, 7\overline{8}, \overline{7}8 8] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^2_{(0,0)}, 1)\mapsto & {} [8, 1\overline{8}, \overline{1}7] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^2_{(1,0)}, 1)\mapsto & {} [8, 7\overline{8}, \overline{7}7] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^2_{(1,1)}, 1)\mapsto & {} [8, 7\overline{8}, \emptyset ] \\ (1^2_{(0,0)}, 1^4, 1^5, 1^8, 1^7, 1^6, 1^4, 1^2)\mapsto & {} [8, \overline{8}8, 1 \overline{8}] \\ (1^2_{(1,0)}, 1^4, 1^5, 1^8, 1^7, 1^6, 1^4, 1^2)\mapsto & {} [8, 1 \overline{8}, \overline{1}1] \\ (1^2_{(1,1)}, 1^4, 1^5, 1^8, 1^7, 1^6, 1^4, 1^2)\mapsto & {} [8, 1\overline{8}8, \emptyset ] \\ (1^4, 1^6, 1^8, 1^{12}, 1^{10}, 1^8, 1^5, 1^2_{(0,0)})\mapsto & {} [8, \overline{8}8, \overline{8}8] \\ (1^4, 1^6, 1^8, 1^{12}, 1^{10}, 1^8, 1^5, 1^2_{(1,0)})\mapsto & {} [8, \overline{8}8, \emptyset ] \\ (1^4, 1^6, 1^8, 1^{12}, 1^{10}, 1^8, 1^5, 1^2_{(1,1)})\mapsto & {} [8, \emptyset , \emptyset ] \\ (1^6, 1^9, 1^{12}, 1^{18}, 1^{15}, 1^{12}, 1^8, 1^4)\mapsto & {} [\emptyset , \emptyset , \emptyset ] \\ (1^2, 21^2, 21^3, 2^2 1^4, 2^2 1^3, 2^2 1^2, 2^2, 2)\mapsto & {} [8, 7\overline{8}, 1 \overline{7}] \\ (2^2, 2^2 1^2, 2^3 1^2, 2^4 1^4, 2^3 1^4, 2^2 1^4, 21^3, 1^2)\mapsto & {} [8, 1\overline{8}, \overline{1}8] \\ (2^2 1^2, 2^3 1^3, 2^4 1^4, 2^6 1^6, 2^5 1^5, 2^4 1^4, 2^3 1^2, 2^2)\mapsto & {} [8, \emptyset , \overline{8}] \end{aligned}$$

\(r=7\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [8, 7\overline{8}] \\ (\emptyset , 1, 1, 1^2, 1^2, 1^2, 1^2, 1)\mapsto & {} [8, 1\overline{8}] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^3, 1_{(0)})\mapsto & {} [8, 8\overline{8}] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^3, 1_{(1)})\mapsto & {} [8, \emptyset ] \\ (1^4, 1^6, 1^8, 1^{12}, 1^{10}, 1^8, 1^6, 1^3)\mapsto & {} [\emptyset , \emptyset ] \end{aligned}$$

\(r=8\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [8] \\ (1^2, 1^3, 1^4, 1^6, 1^5, 1^4, 1^3, 1^2)\mapsto & {} [\emptyset ] \end{aligned}$$

1.4 A.4. Type \(E_6^{(2)}\)

\(r=1\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1] \\ (1^2, 1^3, 1^2, 1)\mapsto & {} [\emptyset ] \end{aligned}$$

\(r=2\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}2] \\ (1, 1^2, 1, \emptyset )\mapsto & {} [1, \overline{1}4] \\ (1_{(0)}, 1^3, 1^2, 1)\mapsto & {} [1, \overline{1}1] \\ (1_{(1)}, 1^3, 1^2, 1)\mapsto & {} [1, \emptyset ] \\ (1^3, 1^6, 1^4, 1^2)\mapsto & {} [\emptyset , \emptyset ] \end{aligned}$$

\(r=3\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}2, \overline{2}3] \\ (\emptyset , 1, 1, \emptyset )\mapsto & {} [1, \overline{1}2, 1 \overline{2}4] \\ (\emptyset , 1^2, 1^2, 1)\mapsto & {} [1, \overline{1}2, 11\overline{2}] \\ (1, 1^2_{(0,0)}, 1^2, 1)\mapsto & {} [1, \overline{1}4, 2\overline{4}] \\ (1, 1^2_{(1,0)}, 1^2, 1)\mapsto & {} [1, \overline{1}2, \overline{2}2] \\ (1, 1^2_{(1,1)}, 1^2, 1)\mapsto & {} [1, \overline{1}2, \emptyset ] \\ (1^2, 1^4, 1^3, 1_{(0)})\mapsto & {} [1, \emptyset , \overline{1}4] \\ (1^2, 1^4, 1^3, 1_{(1)})\mapsto & {} [1, \overline{1}4,\emptyset ] \\ (1^2_{(0,0)}, 1^5, 1^4, 1^2)\mapsto & {} [1, \overline{1}1, \overline{1}1] \\ (1^2_{(1,0)}, 1^5, 1^4, 1^2)\mapsto & {} [1, \overline{1}1, \emptyset ] \\ (1^2_{(1,1)}, 1^5, 1^4, 1^2)\mapsto & {} [1, \emptyset ,\emptyset ] \\ (1^4, 1^8, 1^6, 1^3)\mapsto & {} [\emptyset , \emptyset , \emptyset ] \\ (2, 2^2, 21, 1)\mapsto & {} [1, \overline{1}2, \overline{2}4] \\ (1^2, 2 1^3, 2 1^2, 2)\mapsto & {} [1, \overline{1}4, 1\overline{4}] \\ (2^2, 2^3 1^2, 2^2 1^2, 21)\mapsto & {} [1, \emptyset , \overline{1}] \end{aligned}$$

\(r=4\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [1, \overline{1}4] \\ (\emptyset , 1, 1, 1)\mapsto & {} [1, \emptyset ] \\ (1^2, 1^4, 1^3, 1^2)\mapsto & {} [\emptyset , \emptyset ] \end{aligned}$$

1.5 A.5. Type \(F_4^{(1)}\)

We follow Proposition 4.3 to describe the elements of \(B(\overline{\Lambda }_4)\).

\(r=1\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [4, 1\overline{4}] \\ (1^2, 1^3, 2^2, 2)\mapsto & {} [4, \overline{4}] \end{aligned}$$

\(r=4\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [4, 3\overline{4}, 2\overline{3}] \\ (1, 1^2, 2, \emptyset )\mapsto & {} [4, 3\overline{4}, \overline{3}44] \\ (1_{(0)}, 1^3, 2^2, 2)\mapsto & {} [4, 4\overline{4}, 1\overline{4}] \\ (1_{(1)}, 1^3, 2^2, 2)\mapsto & {} [4, 3\overline{4}, 1\overline{3}] \\ (1^3, 1^6, 2^4, 2^2)\mapsto & {} [4, 4\overline{4}, \overline{4}] \end{aligned}$$

\(r=3\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [4, 3\overline{4}] \\ (1, 1^2, 21, 1)\mapsto & {} [4, 4\overline{4}] \end{aligned}$$

\(r=4\)

$$\begin{aligned} (\emptyset , \emptyset , \emptyset , \emptyset )\mapsto & {} [4] \end{aligned}$$

1.6 A.6. Type \(G_2^{(1)}\)

\(r=1\)

$$\begin{aligned} (\emptyset , \emptyset )\mapsto & {} [1] \end{aligned}$$

\(r=2\)

$$\begin{aligned} (\emptyset , \emptyset )\mapsto & {} [1,2] \\ (3, 1^2)\mapsto & {} [1, \overline{1}] \end{aligned}$$

Appendix B: Examples with SageMath

We give some examples using SageMath [15], where rigged configurations, KR tableaux, and the bijection \(\Phi \) has been implemented by the author.

We first construct Example 4.4.

figure g

Next, we construct Example 5.3.

figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scrimshaw, T. Uniform description of the rigged configuration bijection. Sel. Math. New Ser. 26, 42 (2020). https://doi.org/10.1007/s00029-020-00564-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00564-8

Keywords

Mathematics Subject Classification

Navigation