Skip to main content
Log in

Braid group symmetries of Grassmannian cluster algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \({{\,\mathrm{\text{ Gr }}\,}}^\circ (k,n) \subset {{\,\mathrm{\text{ Gr }}\,}}(k,n)\) denote the open positroid stratum in the Grassmannian. We define an action of the extended affine d-strand braid group on \({{\,\mathrm{\text{ Gr }}\,}}^\circ (k,n)\) by regular automorphisms, for d the greatest common divisor of k and n. The action is by quasi-automorphisms of the cluster structure on \({{\,\mathrm{\text{ Gr }}\,}}^\circ (k,n)\), determining a homomorphism from the extended affine braid group to the cluster modular group for \({{\,\mathrm{\text{ Gr }}\,}}(k,n)\). We also define a quasi-isomorphism between the Grassmannian \({{\,\mathrm{\text{ Gr }}\,}}(k,rk)\) and the Fock–Goncharov configuration space of 2r-tuples of affine flags for \({{\,\mathrm{\text {SL}}\,}}_k\). This identifies the cluster variables, clusters, and cluster modular groups, in these two cluster structures. Fomin and Pylyavskyy proposed a description of the cluster combinatorics for \({{\,\mathrm{\text{ Gr }}\,}}(3,n)\) in terms of Kuperberg’s basis of non-elliptic webs. As our main application, we prove many of their conjectures for \({{\,\mathrm{\text{ Gr }}\,}}(3,9)\) and give a presentation for its cluster modular group. We establish similar results for \({{\,\mathrm{\text{ Gr }}\,}}(4,8)\). These results rely on the fact that both of these Grassmannians have finite mutation type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Assem, I., Dupont, G., Schiffler, R.: On a category of cluster algebras. J. Pure Appl. Algebra 218(3), 553–582 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Assem, I., Schiffler, R., Shramchenko, V.: Cluster Automorphisms. Proc. Lond. Math. Soc. (3) 104(6), 1271–1302 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Barnabei, M., Brini, A., Rota, G.-C.: On the exterior calculus of invariant theory. J. Algebra 96(1), 120–160 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Barot, M., Geiss, Ch., Jasso, G.: Tubular cluster algebras II: exponential growth. J. Pure Appl. Algorithm 217(10), 1825–1837 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bessis, D., Digne, F., Michel, J.: Springer theory in braid groups and the Birman–Ko–Lee monoid. Pacific J. Math. 205(2), 287–309 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Birman, J.S., Brendle, T.E.: Braids: a survey. In: Handbook of Knot Theory, pp. 19–103 (2005)

  7. Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publ. Math. Inst. Hautes Études Sci. 121, 155–278 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew howe duality. Math. Ann. 360(1–2), 351–390 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Cerulli Irelli, G., Keller, B., Labardini-Fragoso, D., Plamondon, P.-G.: Linear independence of cluster monomials for skew-symmetric cluster algebras. Compos. Math. 149(10), 1753–1764 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Derksen, H., Owen, T.: New graphs of finite mutation type. Electron. J. Comb. 15(1), Research Paper 139 (2008). 15 pp

    MathSciNet  MATH  Google Scholar 

  11. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, 49. Princeton University Press, Princeton (2012)

    Google Scholar 

  12. Felikson, A., Shapiro, M., Thomas, H., Tumarkin, P.: Growth rate of cluster algebras. Proc. Lond. Math. Soc. (3) 109(3), 653–675 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Felikson, A., Shapiro, M., Tumarkin, P.: Skew-symmetric quivers of finite mutation type. Eur. Math. Soc. (JEMS) 14(4), 1135–1180 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Felikson, A., Shapiro, M., Tumarkin, P.: Cluster algebras of finite mutation type via unfoldings. Int. Math. Res. Not. 8, 1768–1804 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42, 865–930 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Fock, V.V., Goncharov, A.B.: Cluster \({\cal{X}}\)-Varieties, Amalgamation, and Poisson-Lie Groups, Algebraic Geometry and Number Theory, Progr. Math., 253, pp. 27–68. Birkhäuser Boston, Boston (2006)

  17. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller Theory. Publ. Math. Inst. Hautes. Etudes. Sci. 103, 1–211 (2006)

    MATH  Google Scholar 

  18. Fomin, S., Pylyavskyy, P.: Tensor diagrams and cluster algebras. Adv. Math. 300, 717–787 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Fomin, S., Pylyavskyy, P.: Webs on surfaces, rings of invariants, and cluster algebras. Proc. Natl. Acad. Sci. USA 111(27), 9680–9687 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Fraser, C.: Quasi-homomorphisms of cluster algebras. Adv. Appl. Math. 81, 40–77 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Fraser, C.: Braid group symmetries of Grassmannian cluster algebras, ancillary files. arXiv:1702.00385

  23. Fraser, C., Lam, T., Le, I.: From dimers to webs. Trans. Amer. Math. Soc. 371(9), 6087–6124 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Fraser, C.: Quasi-homomorphisms of cluster algebras and the combinatorics of webs (extended abstract). Discrete Math. Theor. Comput. Sci. Proc. BC 81, 491–502 (2016)

    Google Scholar 

  25. Gadbled, A., Thiel, A.-L., Wagner, E.: Categorical action of the extended braid group of affine type \(A\). Commun. Contemp. Math. 19(3), 1650024 (2017). 39 pp

    MathSciNet  MATH  Google Scholar 

  26. Gehktman, M., Shapiro, M., Vainshtein, A.: On the properties of the exchange graph of a cluster algebra. Math. Res. Lett. 15(2), 321–330 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Goncharov, A., Shen, L.: Donaldson-Thomas transformations for moduli spaces of \(G\)-local systems. Adv. Math. 327, 225–348 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Henriques, A.: An action of the cactus group, Oberwolfach Report 23/2007, pp. 1264–1267. arXiv:0705.3000 [math.AG]

  30. Ishibashi, T.: Presentations of the saturated cluster modular groups of finite mutation type \(X_6\) and \(X_7\). arXiv:1711.07785 [math.QA] (2017)

  31. Kang, S.J., Kashiwara, M., Kim, M., Oh, S.J.: Monoidal categorification of cluster algebras. J. Am. Math. Soc. 31(2), 349–426 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Kassel, C., Turaev, V.: Braid Groups. In: Axler, S., Ribet, K.A., (eds.) Graduate Texts in Mathematics, vol. 247. Springer (2008). https://doi.org/10.1007/978-0-387-68548-9

  33. Kim, D.: Graphical calculus on representations of quantum Lie algebras. Ph.D thesis, UC Davis (2003). arXiv:math/0310143 [math.QA]

  34. Kuperberg, G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Lam, T., Speyer, D.: Cohomology of of cluster varieties. I. Locally acyclic case. arXiv:1604.06843v1 [math.AG] (2016)

  36. Le, I.: Cluster structures on higher Teichmüller spaces for classical groups. arXiv:1603.03523 [math.RT] (2016)

  37. Marsh, R.J., Scott, J.: Twists of Plücker coordinates as dimer partition functions. Commun. Math. Phys. 341(3), 821–884 (2016)

    MATH  Google Scholar 

  38. Morier-Genoud, S., Ovsienko, V., Tabachnikov, S.: 2-frieze patterns and the cluster structure of the space of polygons. Ann. Inst. Fourier (Grenoble) 62(3), 937–987 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Musiker, G., Stump, C.: A compendium on the cluster algebra and quiver package in Sage. Sém. Lothar. Combin. 65, Art. B65d, 67 pp (2010/12)

  40. Oh, S., Postnikov, A., Speyer, D.: Weak separation and plabic graphs. Proc. Lond. Math. Soc. (3) 110(3), 721–754 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Passman, D.S.: Free subgroups in linear groups and group rings. Contemp. Math. 456, 151–164 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Postnikov, A.: Total positivity, Grassmannians, and networks (2006) arXiv:math/0609764

  43. Scott, J.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. 92, 345–380 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Stein, W.A. et al.: Sage mathematics software, Version 6.7. The Sage Development Team (2015). http://sagemath.org

  45. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Berlin (1993)

    MATH  Google Scholar 

Download references

Acknowledgements

The early stages of this work appeared in the extended abstract [24]. Thanks to: Andrew Neitzke, Pavel Tumarkin, Pavlo Pylyavskyy for suggesting the Grassmann-Cayley algebra, Konstanze Rietsch for suggesting the braid group, Dylan Thurston for suggesting the correct construction when k does not divide n, and Ian Le for many ideas and conversations. The SAGE program was begun with David Speyer during SAGE days 64.5, and I thank him and the organizers. Most of all, I thank my Ph.D. advisor Sergey Fomin for his wisdom and encouragement, and for suggesting this line of inquiry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Fraser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Portions of this work were supported by a graduate fellowship from the National Physical Science Consortium and NSF Grant DMS-1361789.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, C. Braid group symmetries of Grassmannian cluster algebras. Sel. Math. New Ser. 26, 17 (2020). https://doi.org/10.1007/s00029-020-0542-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-0542-3

Keywords

Mathematics Subject Classification

Navigation