Skip to main content
Log in

Indefinite Stein fillings and \(\text {PIN}(2)\)-monopole Floer homology

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce techniques to study the topology of Stein fillings of a given contact three-manifold \((Y,\xi )\) which are not negative definite. For example, given a \(\hbox {spin}^c\) rational homology sphere \((Y,{\mathfrak {s}})\) with \({\mathfrak {s}}\) self-conjugate such that the reduced monopole Floer homology group \({\textit{HM}}_{\bullet }(Y,{\mathfrak {s}})\) has dimension one, we show that any Stein filling which is not negative definite has \(b_2^+=1\) or 2, and \(b_2^-\) is determined in terms of the Frøyshov invariant. The proof of this uses \(\text {Pin}(2)\)-monopole Floer homology. More generally, we prove that analogous statements hold under certain assumptions on the contact invariant of \(\xi \) and its interaction with \(\text {Pin}(2)\)-symmetry. We also discuss consequences for finiteness questions about Stein fillings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldwin, J.A.: Heegaard Floer homology and genus one, one-boundary component open books. J. Topol. 1(4), 963–992 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bauer, S.: Almost complex 4-manifolds with vanishing first Chern class. J. Differ. Geom. 79(1), 25–32 (2008)

    MathSciNet  MATH  Google Scholar 

  3. İnanç Baykur, R., Van Horn-Morris, J.: Families of contact \(3\)-manifolds with arbitrarily large Stein fillings. J. Differ. Geom. 101(3), 423–465 (2015). (With an appendix by Samuel Lisi and Chris Wendl)

    MathSciNet  MATH  Google Scholar 

  4. Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and back. American Mathematical Society Colloquium Publications, vol. 59. American Mathematical Society, Providence, RI (2012). (Symplectic geometry of affine complex manifolds)

    MATH  Google Scholar 

  5. Colin, V., Ghiggini, P., Honda, K.: Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions. Proc. Natl. Acad. Sci. USA 108(20), 8100–8105 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Conway, J., Min, H.: Classification of tight contact structures on surgeries on the figure-eight knot, to appear in Geom. Topology (2019)

  7. Dai, I.: On the \(\text{ Pin }(2)\)-equivariant monopole Floer homology of plumbed 3-manifolds. Michigan Math. J. 67(2), 423–447 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (1990)

    MATH  Google Scholar 

  9. Echeverria, M.: Naturality of the contact invariant in monopole Floer homology under strong symplectic cobordisms, to appear in Algebraic Geom. Topology (2018)

  10. Eliashberg, Y.: Filling by holomorphic discs and its applications. Geometry of low-dimensional manifolds. 2 (Durham, 1989), volume 151 of London Mathematical Society Lecture Note Series, pp. 45–67. Cambridge University Press, Cambridge (1990)

  11. Gompf, Robert E., Stipsicz, András I.: \(4\)-Manifolds and Kirby Calculus. Graduate Studies in Mathematics, vol. 20. American Mathematical Society, Providence, RI (1999)

    MATH  Google Scholar 

  12. Hanselman, J., Kutluhan, C., Lidman, T.: A remark on the geography problem in Heegaard Floer homology. Proc. of Symposia in Pure Math. (102) 103–113

  13. Karakurt, Ç.: Contact structures on plumbed 3-manifolds. Kyoto J. Math. 54(2), 271–294 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Kutluhan, C., Lee, Y.-J., Taubes, C.: HF=HM I : Heegaard Floer homology and Seiberg–Witten Floer homology. preprint (2011). https://arxiv.org/abs/1007.1979

  15. Kronheimer, P., Mrowka, T.: Monopoles and Three-Manifolds. New Mathematical Monographs, vol. 10. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  16. Kronheimer, P., Mrowka, T., Ozsváth, P., Szabó, Z.: Monopoles and lens space surgeries. Ann. Math. (2) 165(2), 457–546 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Li, T.-J.: Symplectic 4-manifolds with Kodaira dimension zero. J. Differ. Geom. 74(2), 321–352 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Lin, F.: Lectures on monopole Floer homology. In: Proceedings of the Gökova Geometry-Topology Conference 2015, pp. 39–80. Gökova Geometry/Topology Conference (GGT), Gökova, (2016)

  19. Lin, F.: The surgery exact triangle in \(\text{ Pin }(2)\)-monopole Floer homology. Algebr. Geom. Topol. 17(5), 2915–2960 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Lin, F.: A Morse–Bott approach to monopole Floer homology and the triangulation conjecture. Mem. Am. Math. Soc. 255(1221), 162 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Lisca, P.: On symplectic fillings of lens spaces. Trans. Am. Math. Soc. 360(2), 765–799 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Lisca, P., Matić, G.: Tight contact structures and Seiberg–Witten invariants. Invent. Math. 129(3), 509–525 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Manolescu, C.: Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture. J. Am. Math. Soc. 29(1), 147–176 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Martelli, B.: An introduction to Geometric Topology. arXiv:1610.02592, (2016)

  25. McDuff, D.: The structure of rational and ruled symplectic \(4\)-manifolds. J. Am. Math. Soc. 3(3), 679–712 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Morgan, J.W.: The Seiberg–Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Mathematical Notes, vol. 44. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  27. Ozsváth, P., Szabó, Z.: Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary. Adv. Math. 173(2), 179–261 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Ozbagci, B., Stipsicz, A.I.: Surgery on Contact 3-Manifolds and Stein Surfaces, volume 13 of Bolyai Society Mathematical Studies. Springer, Berlin (2004)

  29. Ozsváth, P., Szabó, Z.: Holomorphic disks and genus bounds. Geom. Topol. 8, 311–334 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Plamenevskaya, O.: Contact structures with distinct Heegaard Floer invariants. Math. Res. Lett. 11(4), 547–561 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Stipsicz, A.I.: Gauge theory and Stein fillings of certain 3-manifolds. Turkish J. Math. 26(1), 115–130 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Stoffregen, M.: Pin(2)-equivariant seiberg-witten floer homology of seifert fibrations. Compositio Mathematica 156(2), 199–250 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Taubes, C.H.: Embedded contact homology and Seiberg–Witten Floer cohomology I. Geom. Topol. 14(5), 2497–2581 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Wendl, C.: Strongly fillable contact manifolds and \(J\)-holomorphic foliations. Duke Math. J. 151(3), 337–384 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank András Stipsicz for sharing his expertise on the subject. This work was partially funded by NSF grant DMS-1807242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F. Indefinite Stein fillings and \(\text {PIN}(2)\)-monopole Floer homology. Sel. Math. New Ser. 26, 18 (2020). https://doi.org/10.1007/s00029-020-0547-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-0547-y

Mathematics Subject Classification

Navigation