Skip to main content
Log in

The affine VW supercategory

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We define the affine VW supercategory , which arises from studying the action of the periplectic Lie superalgebra \(\mathfrak {p}(n)\) on the tensor product \(M\otimes V^{\otimes a}\) of an arbitrary representation M with several copies of the vector representation V of \(\mathfrak {p}(n)\). It plays a role analogous to that of the degenerate affine Hecke algebras in the context of representations of the general linear group; the main obstacle was the lack of a quadratic Casimir element in \(\mathfrak {p}(n)\otimes \mathfrak {p}(n)\). When M is the trivial representation, the action factors through the Brauer supercategory \(\textit{s}\mathcal {B}{} \textit{r}\). Our main result is an explicit basis theorem for the morphism spaces of and, as a consequence, of \(\textit{s}\mathcal {B}{} \textit{r}\). The proof utilises the close connection with the representation theory of \(\mathfrak {p}(n)\). As an application we explicitly describe the centre of all endomorphism algebras, and show that it behaves well under the passage to the associated graded and under deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa, T., Suzuki, T.: Duality between \(\mathfrak{sl}_n({\mathbb{C}})\) and the degenerate affine Hecke algebra. J. Algebra 209(1), 288–304 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ariki, S., Mathas, A., Rui, H.: Cyclotomic Nazarov–Wenzl algebras. Nagoya Math. J. 182, 47–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balagović, M., Daugherty, Z., Entova-Aizenbud, I., Halacheva, I., Hennig, J., Im, M.S., Letzter, G., Norton, E., Serganova, V., Stroppel, C.: Translation functors and decomposition numbers for the periplectic Lie superalgebra \({\mathfrak{p}}(n)\). Math. Res. Lett. 26(3), 643–710 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braverman, A., Gaitsgory, D.: Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type. J. Algebra 181(2), 315–328 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brundan, J., Comes, J., Nash, D., Reynolds, A.: A basis theorem for the affine oriented Brauer category and its cyclotomic quotients. Quantum Topol. 8, 75–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brundan, J., Ellis, A.: Monoidal supercategories. Commun. Math. Phys. 351, 1045–1089 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brundan, J., Kleshchev, A.: Schur–Weyl duality for higher levels. Sel. Math. (N.S.) 14(1), 1–57 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brundan, J., Stroppel, C.: Gradings on walled Brauer algebras and Khovanov’s arc algebra. Adv. Math. 231(2), 709–773 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. J. Eur. Math. Soc. 14(2), 373–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F.: Representation Theory of the Symmetric Groups: The Okounkov–Vershik Approach, Character Formulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics, vol. 121. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  11. Chen, C.W., Peng, Y.N.: Affine periplectic Brauer algebras. J. Algebra 501, 345–372 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, S.-J., Wang, W.: Dualities and Representations of Lie Superalgebras. Graduate Studies in Mathematics, vol. 144. AMS, Providence (2012)

    Book  MATH  Google Scholar 

  13. Cherednik, I.: A new interpretation of Gel’fand–Tzetlin bases. Duke Math. J. 54(2), 563–577 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coulembier, K.: The periplectic Brauer algebra. Proc. Lond. Math. Soc. (3) 117(3), 441–482 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coulembier, K., Ehrig, M.: The periplectic Brauer algebra II: decomposition multiplicities. J. Comb. Algebra 2(1), 19–46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Daugherty, Z., Ram, A., Virk, R.: Affine and degenerate affine BMW algebras: actions on tensor space. Sel. Math. (N.S.) 19(2), 611–653 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daugherty, Z., Ram, A., Virk, R.: Affine and degenerate affine BMW algebras: the center. Osaka J. Math. 51(1), 257–283 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Drinfeld, V.: Degenerate affine Hecke algebras and Yangians. Funct. Anal. Appl. 20, 56–58 (1986)

    Article  MathSciNet  Google Scholar 

  19. Ehrig, M., Stroppel, C.: Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality. Adv. Math. 331, 58–142 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ehrig, M., Stroppel, C.: Schur–Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra. Math. Z. 284(1–2), 595–613 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gorelik, M.: The center of a simple p-type Lie superalgebra. J. Algebra 246, 414–428 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herscovich, E., Solotar, A., Suárez-Álvarez, M.: PBW-deformations and deformations à la Gerstenhaber of \(N\)-Koszul algebras. J. Noncommut. Geom. 8(2), 505–539 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jung, J.H., Kim, M.: Supersymmetric polynomials and the center of the walled Brauer algebra. Algebras. Represent. Theor. arXiv:1508.06469

  24. Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)

    Article  MATH  Google Scholar 

  25. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  26. Kujawa, J.R., Tharp, B.C.: The marked Brauer category. J. Lond. Math. Soc. 95(2), 393–413 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lehrer, G., Zhang, R.: Invariants of the orthosymplectic Lie superalgebra and super Pfaffians. Math. Z. 286(3–4), 893–917 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lehrer, G.I., Zhang, R.B.: The Brauer category and invariant theory. J. Eur. Math. Soc. 17(9), 2311–2351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2(3), 599–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings, With the Cooperation of L. W. Small, Revised edition. Graduate Studies in Mathematics, vol. 30. AMS, Providence (2001)

    MATH  Google Scholar 

  31. Moon, D.: Tensor product representations of the Lie superalgebra \({\mathfrak{p}}(n)\) and their centralizers. Commun. Algebra 31(5), 2095–2140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Musson, I.M.: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics, vol. 131. AMS, Providence (2012)

    Book  MATH  Google Scholar 

  33. Nazarov, M.: Young’s orthonormal form for Brauer’s centralizer algebra. J. Algebra 182(3), 664–693 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Okounkov, A., Vershik, A.: A new approach to representation theory of symmetric groups. Sel. Math. (N.S.) 2(4), 581–605 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rouquier, R.: 2-Kac–Moody algebras. arXiv:0812.5023

  36. Rui, H., Su, Y.: Affine walled Brauer algebras and super Schur–Weyl duality. Adv. Math. 285, 28–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sartori, A.: The degenerate affine walled Brauer algebra. J. Algebra 417, 198–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schedler, T.: Deformations of algebras in noncommutative geometry. In: Noncommutative Algebraic Geometry, vol. 64, pp. 71–165. Mathematical Sciences Research Institute Publication, Cambridge University Press, Cambridge (2016)

  39. Serganova, V.: On representations of the Lie superalgebra \({\mathfrak{p}}(n)\). J. Algebra 258(2), 615–630 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Serganova, V.: Representations of Lie superalgebras. In: Callegaro, F., Carnovale, G., Caselli, F., De Concini, C., De Sole, A. (eds.) Perspectives in Lie Theory. Springer INdAM Series, pp. 125–177. Springer, Cham (2017)

    Chapter  MATH  Google Scholar 

  41. Sergeev, A.: An analog of the classical invariant theory for Lie superalgebras, I+ II. Mich. Math. J. 49(1), 113–146, 147–168 (2001)

  42. Shepler, A., Witherspoon, S.: Poincaré–Birkhoff–Witt theorems. In: Commutative Algebra and Noncommutative Algebraic Geometry, I, vol. 67, pp. 259–290. Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (2015)

Download references

Acknowledgements

We thank Gwyn Bellamy, Michael Ehrig, Stephen Griffeth, Joanna Meinel, Travis Schedler and Anne Shepler for helpful discussions. This project was started at the WINART workshop in Banff, and was developed and finalised during several visits of some of the authors to the Hausdorff Center for Mathematics (in particular to MPI and HIM) in Bonn. We thank these places for the excellent working conditions. We are grateful to the referee for useful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Halacheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balagović, M., Daugherty, Z., Entova-Aizenbud, I. et al. The affine VW supercategory. Sel. Math. New Ser. 26, 20 (2020). https://doi.org/10.1007/s00029-020-0541-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-0541-4

Keywords

Mathematics Subject Classification

Navigation