Skip to main content
Log in

Lagrangian skeleta of hypersurfaces in \(({\mathbb {C}}^*)^n\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(W(z_1, \ldots , z_n): ({\mathbb {C}}^*)^n \rightarrow {\mathbb {C}}\) be a Laurent polynomial in n variables, and let \({\mathcal {H}}\) be a generic smooth fiber of W. Ruddat et al. (Geom Topol 18:1343–1395, 2014) give a combinatorial recipe for a skeleton for \({\mathcal {H}}\). In this paper, we show that for a suitable exact symplectic structure on \({\mathcal {H}}\), the RSTZ-skeleton can be realized as the Liouville Lagrangian skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The case where Q is not full-dimension can be reduced to this one, by defining \(N'_{\mathbb {R}}={{\,\mathrm{span}\,}}_{\mathbb {R}}(Q) \subset N_{\mathbb {R}}\), and \(M_{\mathbb {R}}\twoheadrightarrow M'_{\mathbb {R}}\). The skeleton for \((M_{\mathbb {R}}, N_{\mathbb {R}}, Q)\) would be that of \((M'_{\mathbb {R}}, N'_{\mathbb {R}}, Q)\) times \(T^d\) where \(d=\dim M_{\mathbb {R}}- \dim M'_{\mathbb {R}}\).

  2. We thank Gammage and Shende for this clarification.

  3. We say two Kähler metrics are comparable if the underlying Riemannian metric, denoted as \(g_1, g_2\) , satisfy

    $$\begin{aligned} C^{-1} g_1< g_2 < C g_1 \end{aligned}$$

    for some positive constant C.

  4. We may smooth \(\varphi \) at a small neighborhood around \(0 \in M_{\mathbb {R}}\), but this is irrelevant since we will use \(\varphi \) only as \(\varphi (\beta u)\) for \(\beta \gg 1\) and u in a neighborhood of \(\partial P\).

References

  1. Abouzaid, M.: Homogeneous coordinate rings and mirror symmetry for toric varieties. Geom. Topol. 10, 1097–1156 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back: Symplectic Geometry and Affine Complex Manifolds, vol. 59. AMS Colloquium Publications, Princeton (2012)

    MATH  Google Scholar 

  3. Dyckerhoff, T., Kapranov, M.: Triangulated surfaces in triangulated categories (2013). arXiv:1306.2545

  4. Eliashberg, Y., Nadler, D., Starkston, L.: Arborealization of Weinstein skeleta, in preparation

  5. Fang, B., Liu, C.-C.M., Treumann, D., Zaslow, E.: A categorification of Morelli’s theorem. Invent. Math. 186(1), 79–114 (2011)

    Article  MathSciNet  Google Scholar 

  6. Fang, B., Liu, C.-C.M., Treumann, D., Zaslow, E.: T-duality and homological mirror symmetry for toric varieties. Adv. Math. 229(3), 1873–1911 (2012)

    Article  MathSciNet  Google Scholar 

  7. Gammage, B., Nadler, D.: Mirror symmetry for honeycombs (2017). arXiv:1702.03255

  8. Gammage, B., Shende, V.: Mirror symmetry for very affine hypersurfaces (2017). arXiv:1707.02959v1 [math.SG]

  9. Gel’fand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants and Multidimensional Determinants. Birkhauser Boston, Inc., Boston (2008)

    MATH  Google Scholar 

  10. Ganatra, S., Pardon, J., Shende, V.: Covariantly functorial Floer theory on Liouville sectors (2017). arXiv:1706.03152

  11. Ganatra, S., Pardon, J., Shende, V.: Structural results in wrapped Floer theory (2018). (arXiv:1809.03427 [math.SG])

  12. Ganatra, S., Pardon, J., Shende, V.: Microlocal Morse theory of wrapped Fukaya categories (2018). arXiv:1809.08807 [math.SG]

  13. Hanlon, A.: Monodromy of Fukaya-Seidel categories mirror to toric varieties (2019). preprint arXiv:1809.06001

  14. Kerr, G., Zharkov, I.: Phase tropical hypersurfaces (2018). arXiv:1610.05290

  15. Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. Topology 43(5), 1035–1065 (2004)

    Article  MathSciNet  Google Scholar 

  16. Nadler, D.: Microlocal branes are constructible sheaves. Selecta Math. 15(4), 563–619 (2009)

    Article  MathSciNet  Google Scholar 

  17. Nadler, D.: Arboreal singularities. Geom. Topol. 21, 1231–1274 (2017). arXiv:1309.4122

    Article  MathSciNet  Google Scholar 

  18. Nadler, D.: Non-characteristic expansions of Legendrian singularities (2015). arXiv:1507.01513

  19. Nadler, D.: Wrapped microlocal sheaves on pairs of pants (2016). arXiv:1604.00114

  20. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)

    Article  MathSciNet  Google Scholar 

  21. Pascaleff, J., Sibilla, N.: Topological Fukaya category and mirror symmetry for punctured surfaces (2019). arXiv:1604.06448 [math.AT]

  22. Ruddat, H., Sibilla, N., Treumann, D., Zaslow, E.: Skeleta of affine hypersurfaces. Geom. Topol. 18, 1343–1395 (2014)

    Article  MathSciNet  Google Scholar 

  23. Sibilla, N., Treumann, D., Zaslow, E.: Ribbon graphs and mirror symmetry. Sel. Math. New Ser. 20(4), 979–1002 (2014). arXiv:1103.2462

    Article  MathSciNet  Google Scholar 

  24. Starkston, L.: Arboreal Singularities in Weinstein skeleta (2018). arXiv:1707.03446

  25. Zhou, P.: From Fukaya-Seidel category to constructible sheaves (thesis)

  26. Zhou, P.: Sheaf quantization of legendrian isotopy (2018). arxiv: 1804.08928

Download references

Acknowledgements

I would like to thank my advisor Eric Zaslow for introducing the idea of Lagrangian skeleton and the problem of finding Lagrangian embedding. The idea of using Legendre transformation to identify \(N_{\mathbb {R}}\) and \(M_{\mathbb {R}}\) was inspired by a talk of Helge Ruddat. I thank Vivek Shende and Ben Gammage for the clarification of their work. I also thank Nicolò Sibilla, Gabe Kerr, David Nadler and Ilia Zharkov for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P. Lagrangian skeleta of hypersurfaces in \(({\mathbb {C}}^*)^n\). Sel. Math. New Ser. 26, 26 (2020). https://doi.org/10.1007/s00029-020-00555-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-00555-9

Mathematics Subject Classification

Navigation