Skip to main content
Log in

Analytically Integrable Centers of Perturbations of Cubic Homogeneous Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We consider the analytically integrable perturbations of cubic homogeneous differential systems whose origin is an isolated singularity. We prove that are orbitally equivalent to the cubic vector field associated. We also characterize the analytically integrable centers. We apply the results to two families of degenerate vector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The authors declare that data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Algaba, A., Checa, I., García, C., Giné, J.: Analytic integrability inside a family of degenerate centers. Nonlinear Anal. Real World Appl. 31, 288–307 (2016)

    Article  MathSciNet  Google Scholar 

  2. Algaba, A., Gamero, E., García, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)

    Article  MathSciNet  Google Scholar 

  3. Algaba, A., Díaz, M., García, C., Giné, J.: Analytic integrability around a nilpotent singularity: the non-generic case. Comm. Pure Appl. Anal. 19, 407–423 (2020)

    Article  MathSciNet  Google Scholar 

  4. Algaba, A., García, C., Giné, J.: Analytic integrability around a nilpotent singularity. J. Differ. Equ. 267, 443–467 (2019)

    Article  MathSciNet  Google Scholar 

  5. Algaba, A., García, C., Reyes, M.: Analytic invariant curves and analytic integrability of a planar vector field. J. Differ. Equ. 266, 1357–1376 (2019)

    Article  MathSciNet  Google Scholar 

  6. Algaba, A., García, C., Reyes, M.: Analytical integrability of perturbations of quadratic systems. Mediterr. J. Math. (2021). https://doi.org/10.1007/s00009-020-01647-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Algaba, A., García, C., Reyes, M.: Analytical integrability problem for perturbations of cubic Kolmogorov systems. Chaos, Solitons Fractals 113, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  8. Algaba, A., García, C., Reyes, M.: Like-linearizations of vector fields. Bull. Sci. Math. 133, 806–816 (2009)

    Article  MathSciNet  Google Scholar 

  9. Algaba, A., García, C., Reyes, M.: Integrability of two dimensional quasi-homogeneous polynomial differential systems. Rocky Mt. J. Math. 41(1), 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  10. Basov, V.V.: Two-dimensional homogeneous cubic systems: classification and normal forms. I St. Petersburg University. Mathematics 49(2), 99–110 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Chen, X., Giné, J., Romanovski, V.G., Shafer, D.S.: The 1:-q resonant center problem for certain cubic Lotka-Volterra systems. Appl. Math. Comput. 218, 11620–11633 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Christopher, C., Mardešic, P., Rousseau, C.: Normalizable, integrable, and linearizable saddle points for complex quadratic systems in \({\mathbb{C}}^2\). J. Dynam. Control Syst. 9(3), 311–363 (2003)

    Article  Google Scholar 

  13. Christopher, C., Rousseau, C.: Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system. Qual. Theory Din. Syst. 5(1), 11–61 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ferčec, B., Giné, J.: A blow-up method to prove formal integrability for some planar differential systems. J. Appl. Anal. Math. Comput 8(6), 1833–50 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Ferčec, B., Giné, J.: Blow-up method to compute necessary conditions of integrability for planar differential systems Appl. Math. Comput 358, 16–24 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Giné, J., Romanovski, V.G.: Integrability conditions for Lotka-Volterra planar complex quintic systems. Nonlinear Anal. Real World Appl. 11(3), 2100–2105 (2010)

    Article  MathSciNet  Google Scholar 

  17. Han, M., Jiang, K.: Normal forms of integrable systems at a resonant saddle. Ann. Differ. Equ. 14(2), 150–155 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Liu, C., Chen, G., Chen, G.: Integrability of Lotka-Volterra type systems of degree 4. J. Math. Anal. Appl. 388(2), 1107–1116 (2012)

    Article  MathSciNet  Google Scholar 

  19. Liu, C., Chen, G., Li, C.: Integrability and linearizability of the Lotka-Volterra systems. J. Differ. Equ. 198(2), 301–320 (2004)

    Article  MathSciNet  Google Scholar 

  20. Mattei, J.. F., Moussu, R.: Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. (4) 13(4), 469–523 (1980)

    Article  MathSciNet  Google Scholar 

  21. Poincaré, H.: Mémoire sur les courbes définies par les équations différentielles, J Math Pures Appl 4 (1885) 167–244; Oeuvres de Henri Poincaré, vol. I, pp. 95–114. Gauthier-Villars, Paris (1951)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Ministerio de Ciencia, Innovación y Universidades, Spain (project PGC2018-096265-B-I00) and by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía, Spain (projects FQM-276, UHU-1260150 and P12-FQM-1658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Reyes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following results will be used to compute a normal form of the vector fields considered.

The following technical lemma is a direct consequence of Hilbert’s Nussstellnsatz.

Lemma 5.10

Consider \({{\mathbf {F}}}_{n}\in {\mathcal {H}}_{n}\) irreducible (its components are coprime) and \(f \in {\mathbb {C}}[x,y]\) an irreducible invariant curve at the origin of \({{\mathbf {F}}}_{n}\). If \(F_n(p_k) \in \left<f\right>\) with \(p_k\in {\mathscr {P}}_{k},\) then \(p_k \in \left<f\right>\).

Lemma 5.11

Let \(f\in {{\mathbf {C}}}[x,y]\) an irreducible polynomial invariant curve of \({{\mathbf {F}}}_{n},\ K\in {\mathscr {P}}_{n-1}\) its cofactor and \(k,m\in {\mathbb {N}}\) with \(n+k-1\ge m.\) Assume that the vector fields of \({\mathcal {H}}_{n}\), \( {{\mathbf {F}}}_n+{\textstyle {\frac{jK}{k-j}}}{{\mathbf {D}}},\ 0\le j\le m-1,\) are irreducible. Then, if \(F_n(p_k) \in \left<f^m\right>\) with \(p_k\in {\mathscr {P}}_{k},\) it satisfies that \(p_k \in \left<f^m\right>\).

Proof

Lemma 5.10 proves the statement for \(m=1\).

We first consider the case \(m=2\). If \(F_{n}(p_k)\in \langle f^2\rangle \) then \(F_{n}(p_k)\in \langle f\rangle \) and, by Lemma 5.10, we have that there exists \(p_{k-1}\in {\mathscr {P}}_{k-1}\) such that \(p_k=fp_{k-1}\). Therefore,

$$\begin{aligned} F_{n}(p_k)= & {} F_{n}(fp_{k-1})=p_{k-1}F_{n}(f)+fF_{n}(p_{k-1})=p_{k-1}Kf +fF_{n}(p_{k-1})\\= & {} f\left( {\textstyle {\frac{K}{k-1}}}D(p_{k-1})+F_{n}(p_{k-1}) \right) =f(F_{n} +{\textstyle {\frac{K}{k-1}}}D)(p_{k-1})\in \langle f^2\rangle . \end{aligned}$$

Hence \((F_{n}+{\textstyle {\frac{K}{k-1}}}D)(p_{k-1})\in \langle f\rangle .\) Applying Lemma 5.10 for the irreducible vector field \({{\mathbf {F}}}_{n}+{\textstyle {\frac{K}{k-1}}}{{\mathbf {D}}},\) we have that \(p_{k-1}\in \langle f\rangle \) and consequently \(p_k\in \langle f^2\rangle \).

Consider now the case \(m=3\). If \(F_{n}(p_{k})\in \langle f^3\rangle \) then \(F_{n}(p_{k})\in \langle f^2\rangle \) and by the previous paragraph we have that there exists \(p_{k-2}\in {\mathscr {P}}_{k-2}\) such that \(p_k=f^2p_{k-2}\), therefore

$$\begin{aligned} F_{n}(p_k)= & {} F_{n}(f^2p_{k-2})=p_{k-2}F_{n}(f^2)+f^2F_{n}(p_{k-2}) =2p_{k-2}Kf^2+f^2F_{n}(p_{k-2})\\= & {} f^2\left( {\textstyle {\frac{2K}{k-2}}}D(p_{k-2})+F_{n}(p_{k-2}) \right) =f^2(F_{n} +{\textstyle {\frac{2K}{k-2}}}D)(p_{k-2})\in \langle f^3\rangle . \end{aligned}$$

Hence \((F_{n}+{\textstyle {\frac{2K}{k-2}}}D)(p_{k-2})\in \langle f\rangle \) and as \({{\mathbf {F}}}_{n}+{\textstyle {\frac{2K}{k-2}}}{{\mathbf {D}}}\) is irreducible, applying Lemma 5.10 we have that \(p_{k-2}\in \langle f\rangle \) and consequently \(p_{k}\in \langle f^3\rangle \). Reasoning by induction we get the result for all m natural number. \(\square \)

Lemma 5.12

The following statements are satisfied:

(i):

The vector field \( {{\mathbf {F}}}_{3,ix}+\alpha K_1{{\mathbf {D}}}\) with \(K_1:=-2q(d^2-1)xy\) (cofactor of \(f_1=x^2+y^2\), invariant curve at the origin of \({{\mathbf {F}}}_{3,ix}\)) and \(\alpha \in {\mathbb {Q}}^+,\) is irreducible if and only if \(2\alpha \ne \frac{p}{q}.\)

(ii):

The vector field \( {{\mathbf {F}}}_{3,ix}+\alpha K_2{{\mathbf {D}}}\) with \(K_2:=2p(d^2-1)xy\) (cofactor of \(f_2=x^2+d^2y^2\), invariant curve at the origin of \({{\mathbf {F}}}_{3,ix}\)) and \(\alpha \in {\mathbb {Q}}^+,\) is irreducible if and only if \(2\alpha \ne \frac{q}{p}.\)

Proof

We prove item (i), being the case (ii) analogous. The components of \( {{\mathbf {F}}}_{3,ix}+\alpha K_1{{\mathbf {D}}}\) are of the form

$$\begin{aligned} \begin{array}{l} -y(a_{20}x^2+a_{02}):=-y\left( (2\alpha d^2q+d^2q-2\alpha q+p)x^2+d^2(p+q)y^2\right) ,\\ x(b_{20}x^2+b_{02}):=x\left( (p+q)x^2+(-2\alpha d^2q+d^2p+2\alpha q+q)y^2\right) . \end{array} \end{aligned}$$

Both polynomials are coprime if and only if \(a_{20}b_{02}-a_{02}b_{20}\ne 0\), i.e.

$$\begin{aligned} q(d^2-1)^2(2\alpha +1)(2\alpha q-p)\ne 0, \end{aligned}$$

that is, \(2\alpha \ne \frac{p}{q}.\) \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algaba, A., García, C. & Reyes, M. Analytically Integrable Centers of Perturbations of Cubic Homogeneous Systems. Qual. Theory Dyn. Syst. 20, 43 (2021). https://doi.org/10.1007/s12346-021-00479-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00479-5

Keywords

Navigation