Skip to main content
Log in

Dynamics of Traveling Waves for the Perturbed Generalized KdV Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to the existence of traveling, solitary and periodic waves for the perturbed generalized KdV by applying geometric singular perturbation, differential manifold theory and the regular perturbation analysis of Hamiltonian systems. Under the assumptions that the distributed delay kernel is the strong general one and the average delay is sufficiently small, traveling, solitary and periodic waves are shown to exist in the perturbed system. It is further proved that the wave speed is decreasing by analyzing the ratio of Abelian integrals, and we analyze these functions by using the theory of analytic functions and algebraic geometry. Moreover, the upper and lower bounds of the limit wave speed are presented. The relationship between wavelength and wave speed of traveling waves is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  2. Korteweg, D.J., Vries, G.d: On the change of form of the long waves advancing in a rectangular canal, and on a new type of stationary waves. Philos. Mag. 39, 422–443 (1895)

  3. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive system. Math. Phys. Sci. 272, 47–78 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid. Mech. 78, 237–246 (1976)

    Article  Google Scholar 

  5. Camassa, R., Holm, D.: An integrable shallow water equation with peaked soliton. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  6. Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry Perturbation Theory. 23–37, (1999)

  7. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1980)

    MATH  Google Scholar 

  8. Derks, G., Gils, S.: On the uniqueness of traveling waves in perturbed Korteweg–de Vries equations. Jpn. J. Ind. Appl. Math. 10, 413–430 (1993)

    Article  MathSciNet  Google Scholar 

  9. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg–de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)

    Article  MathSciNet  Google Scholar 

  10. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)

    Article  Google Scholar 

  11. Sivashinsky, G.I.: Nonlinear ananlysis of hydrodynamic instability in laminar flames I. Derivations of basic equations. Acta Astronaut. 4, 1177–1206 (1977)

    Article  MathSciNet  Google Scholar 

  12. Li, H., Sun, H., Zhu, W.: Solitary waves and periodic waves in a perturbed KdV equation. Qual. Theory Dyn. Syst. 19(83) (2020)

  13. Carr, J., Chow, S.N., Hale, J.K.: Abelian integrals and bifurcation theory. J. Differ. Equ. 59, 413–436 (1985)

    Article  MathSciNet  Google Scholar 

  14. Chow, S.N., Sanders, J.A.: On the number of critical points of the period. J. Differ. Equ. 64, 51–66 (1986)

    Article  MathSciNet  Google Scholar 

  15. Cushman, R., Sanders, J.A.: A codimension two bifurcations with a third order Picard-Fuchs equation. J. Differ. Equ. 59, 243–256 (1985)

    Article  MathSciNet  Google Scholar 

  16. Holzer, M., Doelman, A., Kaper, T.J.: Existence and stability of traveling pulses in a reaction–diffusion–mechanics system. J Nonlinear Sci. 23, 129–177 (2013)

    Article  MathSciNet  Google Scholar 

  17. Ai, S.: Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal. 42, 833–856 (2010)

    Article  MathSciNet  Google Scholar 

  18. Bates, P.W., Shi, J.: Existence and instability of spike layer solutions to singular perturbation problems. J. Funct. Anal. 196, 211–264 (2002)

    Article  MathSciNet  Google Scholar 

  19. Engler, H., Kaper, H.G., Kaper, T.J., Vo, T.: Dynamical systems analysis of the Maasch–Saltzman model for glacial cycles. Physica D. 359, 1–20 (2017)

    Article  MathSciNet  Google Scholar 

  20. Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248, 2841–2888 (2010)

    Article  MathSciNet  Google Scholar 

  21. Liu, W., Vleck, E.: Turning points and traveling waves in FitzHugh-Nagumo type equations. J. Differ. Equ. 225, 381–410 (2006)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Lu, K., Bates, P.W.: Normally hyperbolic invariant manifolds for random dynamical systems. Trans. Am. Math. Soc. 365, 5933–5966 (2013)

    Article  MathSciNet  Google Scholar 

  23. Li, J., Lu, K., Bates, P.W.: Invariant foliations for random dynamical systems. Discrete Contin. Dyn. Syst. 34, 3639–3666 (2014)

    Article  MathSciNet  Google Scholar 

  24. Li, J., Lu, K., Bates, P.W.: Geometric singular perturbation theory with real noise. J. Differ. Equ. 259, 5137–5167 (2015)

    Article  MathSciNet  Google Scholar 

  25. Bates, P.W., Li, J., Zhang, M.: Singular fold with real noise. Discrete Contin. Dyn. Syst. Ser. B. 21, 2091–2107 (2016)

    Article  MathSciNet  Google Scholar 

  26. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  27. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm via a geometric approach. J. Funct. Anal. 275, 988–1007 (2018)

    Article  MathSciNet  Google Scholar 

  28. Jones, C.K.R.T.: Geometrical Singular Perturbation Theory. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranchao Wu.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11971032, 62073114 and 11871251).

Conflict of interest

The authors declare that they have no competing interests.

Data availability statement

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, J., Wu, R. & Du, Z. Dynamics of Traveling Waves for the Perturbed Generalized KdV Equation. Qual. Theory Dyn. Syst. 20, 42 (2021). https://doi.org/10.1007/s12346-021-00483-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00483-9

Keywords

Mathematics Subject Classification

Navigation