Skip to main content
Log in

Characterizing Orbital-Reversibility Through Normal Forms

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the orbital-reversibility problem for an n-dimensional vector field, which consists in determining if there exists a time-reparametrization that transforms the vector field into a reversible one. We obtain an orbital normal form that brings out the invariants that prevent the orbital-reversibility. Hence, we obtain a necessary condition for a vector field to be orbital-reversible. Namely, the existence of an orbital normal form which is reversible to the change of sign in some of the state variables. The necessary condition provides an algorithm, based on the vanishing of the orbital normal form terms that avoid the orbital-reversibility, that is applied to some families of planar and three-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Algaba, A., Checa, I., Gamero, E., García, C.: On orbital-reversibility for a class of planar dynamical systems. Commun. Nonlinear Sci. 20, 229–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Algaba, A., Freire, E., Gamero, E.: Hypernormal forms for equilibria of vector fields. Codimension on linear degeneracies. Rocky Mt. J. Math. 29, 13–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Algaba, A., Freire, E., Gamero, E., García, C.: Quasihomogeneous normal forms. J. Comput. Appl. Math. 150, 193–216 (2002)

    Article  MATH  Google Scholar 

  4. Algaba, A., Freire, E., Gamero, E., García, C.: An algorithm for computing quasi-homogeneous formal normal forms under equivalence. Acta Appl. Math. 80, 335–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Algaba, A., Gamero, E., García, C.: The integrability problem for a class of planar systems. Nonlinearity 22, 395–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Algaba, A., Gamero, E., García, C.: The reversibility problem for quasi-homogeneous dynamical systems. Discrete Contin. Dyn. Syst. 33, 3225–3236 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Algaba, A., Gamero, E., García, C.: The center problem: a view from the normal form theory. J. Math. Anal. Appl. 434, 680–697 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Algaba, A., García, C., Giné, J.: Analytic integrability for some degenerate planar vector fields. J. Differ. Equ. 257, 549–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Algaba, A., García, C., Giné, J.: Center conditions of a particular polynomial differential system with a nilpotent singularity. J. Math. Anal. Appl. 483, 123639 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Algaba, A., García, C., Giné, J.: Orbital reversibility of planar vector fields. Mathematics 9, 14 (2021)

    Article  Google Scholar 

  11. Algaba, A., García, C., Teixeira, M.A.: Reversibility and quasi-homogeneous normal forms of vector fields. Nonlinear Anal. Theory 73, 510–525 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berthier, M., Moussu, R.: Réversibilité et classification des centres nilpotents. Ann. I Fourier 44, 465–494 (1994)

    Article  MATH  Google Scholar 

  13. Bruno, A.D.: Analysis of the Euler–Poisson equations by methods of power geometry and normal form. J. Appl. Math. Mech. 71, 168–199 (2007)

    Article  MathSciNet  Google Scholar 

  14. Buzzi, C.A., Llibre, J., Medrado, J.C.R.: Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin. Qual. Theory Dyn. Syst. 7, 369–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buzzi, C., Teixeira, M.A., Yang, J.: Hopf-zero bifurcations of reversible vector fields. Nonlinearity 14, 623–638 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Champneys, A.R.: Codimension-one persistence beyond all orders of homoclinic orbits to singular saddle centres in reversible systems. Nonlinearity 14, 87–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Local analytic integrability for nilpotent centers. Ergod. Theory Dyn. Syst. 23, 417–428 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Christopher, C., Li, C.: Limit Cycles of Differential Equations. Birkhauser, Berlin (2007)

    MATH  Google Scholar 

  19. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  20. Cicogna, G., Gaeta, G.: Symmetry and Perturbation Theory in Nonlinear Dynamics. Springer, Berlin (1999)

    MATH  Google Scholar 

  21. Devaney, R.L.: Reversible diffeomorphisms and flows. Trans. Am. Math. Soc. 218, 89–113 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gaeta, G.: Normal forms of reversible dynamical systems. Int. J. Theor. Phys. 33, 1917–1928 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gasull, A., Torregrosa, J.: Center problem for several differential equations via Cherkas’ method. J. Math. Anal. Appl. 228, 322–343 (1998)

  24. Giacomini, H., Giné, J., Llibre, J.: The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems. J. Differ. Equ. 227, 406–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Giné, J., Maza, S.: The reversibility and the center problem. Nonlinear Anal. Theory 74, 695–704 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han, M., Petek, T., Romanovski, V.G.: Reversibility in polynomial systems of ODE’s. Appl. Math. Comput. 338, 55–71 (2018)

  27. Lamb, J.S.W., Lima, M.F.S., Martins, R.M., Teixeira, M.A., Yang, J.: On the Hamiltonian structure of normal forms at elliptic equilibria of reversible vector fields in \(\mathbb{R}^4\). J. Differ. Equ. 269, 11366–11395 (2020)

    Article  MATH  Google Scholar 

  28. Lamb, J.S.W., Roberts, J.A.G.: Time-reversal symmetry in dynamical systems: a survey. Phys. D 112, 1–39 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lamb, J.S.W., Roberts, J.A.G., Capel, H.W.: Conditions for local (reversing) symmetries in dynamical systems. Phys. A 197, 379–422 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, C., Llibre, J.: Quadratic perturbations of a quadratic reversible Lotka–Volterra system. Qual. Theory Dyn. Syst. 9, 235–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Llibre, J., Medrado, J.C.: Darboux integrability and reversible quadratic vector fields. Rocky Mt. J. Math. 35, 1999–2057 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matveyev, M.V.: Lyapunov stability of equilibrium states of reversibles systems. Math. Notes+ 57, 63–72 (1993)

    Article  Google Scholar 

  33. Matveyev, M.V.: Reversible systems with first integrals. Phys. D 112, 148–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Medrado, J.C., Teixeira, M.A.: Symmetric singularities of reversible vector fields in dimension three. Phys. D 112, 122–131 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Montgomery, D., Zippin, L.: Topological Transformation Groups. Interscience Publ, New York (1955)

    MATH  Google Scholar 

  36. Roberts, J.A.G., Quispel, G.R.W.: Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep. 216, 63–177 (1992)

    Article  MathSciNet  Google Scholar 

  37. Romanovski, V.G.: Time-reversibility in 2-dimensional systems. Open Syst. Inf. Dyn. 15, 359–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sabatini, M.: Every period annulus is both reversible and symmetric. Qual. Theory Dyn. Syst. 16, 175–185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sevryuk, M.B.: Reversible Systems. Lecture Notes Mathematics, vol. 1211. Springer, Berlin (1986)

    Google Scholar 

  40. Teixeira, M.A.: Local reversibility and applications. In: Bruce, J.W., Tari, F. (eds.) Real and Complex Singularities. Research Notes in Mathematics, vol. 412, pp. 251–265. CRC, Boca Raton (2000)

    Google Scholar 

  41. Teixeira, M.A., Yang, J.: The center-focus problem and reversibility. J. Differ. Equ. 174, 237–251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tkhai, V.N.: The reversibility of mechanical systems. J. Appl. Math. Mech. 55, 461–469 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wei, L., Romanovski, V., Zhang, X.: Generalized involutive symmetry and its application in integrability of differential systems. Z. Angew. Math. Phys. 68, 132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xiong, Y., Cheng, R., Li, N.: Limit cycle bifurcations in perturbations of a reversible quadratic system with a non-rational first integral. Qual. Theory Dyn. Syst. 19, 97 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yagasaki, K., Wagenknecht, T.: Detection of symmetric homoclinic orbits to saddle-centres in reversible systems. Phys. D 214, 169–181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Ministerio de Ciencia e Innovación, fondos FEDER (project MTM2017-87915-C2-1-P), by the Ministerio de Ciencia, Innovación y Universidades, fondos FEDER (project PGC2018-096265-B-I00) and by the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (projects P12-FQM-1658, UHU-1260150, TIC-130, FQM-276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gamero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Technical Results on Orbital Normal Forms

We present now some technical results about the orbital normal form reduction procedure. Along this appendix, the vector field \({\mathbf{F}}\) is defined in (6). The first result can be found in [11].

Lemma 17

Let us consider \(k\in \mathbb {N}\) and a couple of near-identity transformations \(\Phi \) and \(\Psi \), with generators \({\mathbf{U}}=\sum _{j\ge 1}{\mathbf{U}}_j\) and \({\mathbf{V}}=\sum _{j\ge k}{\mathbf{V}}_j\) (with \({\mathbf{U}}_j,{\mathbf{V}}_j\in \mathcal {Q}_j^{\mathbf{t}}\)), respectively. Let also consider the near-identity transformation \(\Psi \circ \Phi \), and denote its generator by \({\mathbf{W}}\).

Then, \({\mathbf{U}}\) and \({\mathbf{W}}\) agree up to quasi-homogeneous degree \(k-1\) (i.e., \(\mathcal {J}^{k-1}\left( {\mathbf{U}} \right) =\mathcal {J}^{k-1}({\mathbf{W}})\)), and the k-degree quasi-homogeneous terms are

$$\begin{aligned} {\mathbf{W}}_k={\mathbf{U}}_k+{\mathbf{V}}_k. \end{aligned}$$

Next results show that the orbital normal form reduction procedure can also be carried out by changing the order of the temporal and spatial transformations for each degree, that is, first performing the near-identity transformation and then the time-reparametrization.

Lemma 18

Let us consider \(\mu _{k}\in \mathcal {P}_{k}^{\mathbf{t}}\), where \(k\in \mathbb {N}\), and \({\mathbf{U}}=\sum _{j\ge 1} {\mathbf{U}}_j\), with \({\mathbf{U}}_j\in \mathcal {Q}_j^{\mathbf{t}}\). Then, there exists \(\lambda =\sum _{j\ge k}\lambda _j\), with \(\lambda _j \in \mathcal {P}_j^{\mathbf{t}}\), such that

$$\begin{aligned} (1+\mu _{k}) \left( {\mathbf{U}}{\, }_{ **}{\, }{\mathbf{F}} \right) = {\mathbf{U}}{\, }_{ **}{\, }\left( (1+\lambda ){\mathbf{F}} \right) , \end{aligned}$$

where the lowest-degree quasi-homogeneous term of \(\lambda \) is \(\lambda _k = \mu _{k} \).

Proof

Let us define \(T_{\mathbf{U}}^{(0)}\left( {\mathbf{F}} \right) := {\mathbf{F}}\), and

$$\begin{aligned} T_{\mathbf{U}}^{(l)}\left( {\mathbf{F}} \right) := T_{\mathbf{U}}^{(l-1)}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] \right) = {\mathop {\overbrace{\left[ \right. \cdots \left[ \right. }}\limits ^{l\ \text {{times}}}} {\mathbf{F}},{\mathbf{U}}\left. \right] ,\cdots ,{\mathbf{U}}\left. \right] = \left[ T_{\mathbf{U}}^{(l-1)}\left( {\mathbf{F}} \right) , {\mathbf{U}}\right] , \ \text { for } l\ge 1. \end{aligned}$$

In [2] it is shown that the transformed system is given by

$$\begin{aligned} {\mathbf{U}}{\, }_{ **}{\, }{\mathbf{F}}=\sum _{l=0}^{\infty }\frac{1}{l!}T_{\mathbf{U}}^{(l)}\left( {\mathbf{F}} \right) . \end{aligned}$$

Let us denote the successive Lie derivatives along the vector field \({\mathbf{U}}\) of the scalar function \(\mu _{k}\) by \(\mu ^{[j]}_{k}\), i.e.,

$$\begin{aligned} \mu ^{[0]}_{k} = \mu _{k}, \ \text { and } \mu ^{[j]}_{k}= { \nabla \mu ^{[j-1]}_{k}} \cdot {\mathbf{U}}, \ \text { for } j\ge 1. \end{aligned}$$

Using induction, it is easy to prove that

$$\begin{aligned} \mu _{k} T^{(l)}_{{\mathbf{U}}}\left( {\mathbf{F}} \right) = \sum _{j=0}^l {l \atopwithdelims ()j} (-1)^j T^{(l-j)}_{{\mathbf{U}}} \left( \mu ^{[j]}_{k} {\mathbf{F}} \right) , \ \text { for all } \ l\ge 0. \end{aligned}$$

Then,

$$\begin{aligned} (1+\mu _{k}) \left( {\mathbf{U}}{\, }_{ **}{\, }{\mathbf{F}} \right)= & {} \sum _{l=0}^{\infty } \frac{1}{l!} T_{\mathbf{U}}^{(l)} \left( {\mathbf{F}} \right) + \sum _{l=0}^{\infty } \frac{1}{l!} \sum _{j=0}^l {l \atopwithdelims ()j} (-1)^j T^{(l-j)}_{{\mathbf{U}}} \left( \mu ^{[j]}_{k} {\mathbf{F}} \right) \\= & {} { \sum _{l=0}^{\infty } \frac{1}{l!} T_{\mathbf{U}}^{(l)} \left( {\mathbf{F}} \right) + \sum _{l=0}^{\infty } \sum _{j=0}^l \frac{1}{j!l!} (-1)^j T^{(l)}_{{\mathbf{U}}} \left( \mu ^{[j]}_{k} {\mathbf{F}} \right) }\\= & {} \sum _{l=0}^{\infty } \frac{1}{l!} T^{(l)}_{{\mathbf{U}}} \left( \left( {\textstyle 1 + \sum _{j=0}^l \frac{1}{j!} (-1)^j \mu ^{[j]}_{k} } \right) {\mathbf{F}} \right) = {\mathbf{U}}{\, }_{ **}{\, }\left( (1+\lambda ) {\mathbf{F}} \right) , \end{aligned}$$

as claimed, where we have introduced \(\lambda := \sum _{j=0}^l \frac{1}{j!} (-1)^j \mu ^{[j]}_{k} \). Moreover, it is easy to show that \(\lambda _k = \mu _{k} \). \(\blacksquare \)

Lemma 19

Let us consider \(\rho _{k} \in \mathcal {P}_k^{\mathbf{t}}\), where \(k\in \mathbb {N}\), and \(\mu =\sum _{j\ge 1} \mu _j\), where \(\mu _j\in \mathcal {P}_j^{\mathbf{t}}\). Then, there exists \(\eta =\sum _{j\ge 1} \eta _j\), with \(\eta _j \in \mathcal {P}_j^{\mathbf{t}}\), such that:

$$\begin{aligned} \left( \rho _{k} {\mathbf{F}} \right) {\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) = (1+\eta ) {\mathbf{F}}. \end{aligned}$$

Moreover, \(\mathcal {J}^{r+k-1}\left( \eta \right) =\mathcal {J}^{r+k-1}(\mu )\) (i.e., \(\eta \) and \(\mu \) agree up to quasi-homogeneous degree \(r+k-1\)), and the \((r+k)\)-degree quasi-homogeneous term is \(\eta _{r+k} = \mu _{r+k} - \nabla \rho _{k} \cdot {\widetilde{\mathbf{F}}}_r\).

Proof

Firstly, we will show that, for each \(l\in \mathbb {N}\), there exists \(\eta ^{(l)}=\sum _{ j \ge l(r+k)} \eta ^{(l)}_j\), with \( \eta ^{(l)}_j \in \mathcal {P}_j^{\mathbf{t}}\), satisfying:

$$\begin{aligned} T_{\rho _{k} {\mathbf{F}}}^{(l)} \left( (1+\mu ){\mathbf{F}} \right) = \eta ^{(l)}{\mathbf{F}}. \end{aligned}$$
(20)

We proceed by induction on l.

  • If \(l=1\), using (3) we obtain

    $$\begin{aligned} T_{\rho _{k} {\mathbf{F}}} \left( (1+\mu ){\mathbf{F}} \right)= & {} \left[ (1+\mu ){\mathbf{F}},\rho _{k} {\mathbf{F}} \right] \\= & {} \left( \rho _{k} \left( \nabla \mu \cdot {\mathbf{F}} \right) - (1+\mu ) \left( \nabla \rho _{k} \cdot {\mathbf{F}} \right) \right) {\mathbf{F}}=\eta ^{(1)}{\mathbf{F}}, \end{aligned}$$

    where we have denoted \(\eta ^{(1)} := \rho _{k} \left( \nabla \mu \cdot {\mathbf{F}} \right) - (1+\mu ) \left( \nabla \rho _{k} \cdot {\mathbf{F}} \right) \). Observe that the principal part of \(\eta ^{(1)}\) is \(\eta _{r+k}^{(1)} = - \nabla \rho _{k} \cdot {\widetilde{\mathbf{F}}}_r\).

  • Now, suppose that (20) holds for \(l-1\), that is, there exists \(\eta ^{(l-1)}=\sum _{ j \ge (l-1)(r+k)} \eta ^{(l-1)}_j\), with \( \eta ^{(l-1)}_j \in \mathcal {P}_j^{\mathbf{t}}\), such that

    $$\begin{aligned} T_{\rho _{k} {\mathbf{F}}}^{(l-1)} \left( (1+\mu ){\mathbf{F}} \right) = \eta ^{(l-1)}{\mathbf{F}}. \end{aligned}$$

    Using again (3), we obtain

    $$\begin{aligned} T_{\rho _{k} {\mathbf{F}}}^{(l)} \left( (1+\mu ){\mathbf{F}} \right) = \left[ T_{\rho _{k} {\mathbf{F}}}^{(l-1)} \left( (1+\mu ){\mathbf{F}} \right) , \rho _{k} {\mathbf{F}} \right] = \left[ \eta ^{(l-1)}{\mathbf{F}}, \rho _{k} {\mathbf{F}} \right] = \eta ^{(l)}{\mathbf{F}}, \end{aligned}$$

    where we have introduced \(\eta ^{(l)} := \rho _{k} \left( \nabla \eta ^{(l-1)}\cdot {\mathbf{F}} \right) - \eta ^{(l-1)} \left( \nabla \rho _{k} \cdot {\mathbf{F}} \right) \). We notice that the principal part of \(\eta ^{(l)}\) has quasi-homogeneous degree \( l(r+k)\).

By the principle of induction, equality (20) holds for all \(l\in \mathbb {N}\). Hence, we have:

$$\begin{aligned} \left( \rho _{k} {\mathbf{F}} \right) {\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right)= & {} {\textstyle \sum _{l=0}^{\infty } {\textstyle {\frac{1}{l!}}} T_{\rho _{k} {\mathbf{F}}}^{(l)}\left( (1+\mu ){\mathbf{F}} \right) }=(1+\mu ){\mathbf{F}}+{\textstyle \sum _{l=0}^{\infty }{\textstyle {\frac{1}{l!}}}\eta ^{(l)}{\mathbf{F}}}\\= & {} \left( 1+\mu +{\textstyle \sum _{l=1}^{\infty } {\textstyle {\frac{1}{l!}}}\eta ^{(l)}} \right) {\mathbf{F}}= (1+\eta ) {\mathbf{F}}, \end{aligned}$$

where we have denoted \(\eta :=\mu +\sum _{l\ge 1}\frac{1}{l!}\eta ^{(l)}\). To show that the principal part of \(\eta \) is \(\eta _{r+k} = \mu _{r+k} - \nabla \rho _{k} \cdot {\widetilde{\mathbf{F}}}_r\), it is enough to recall that the principal part of \(\eta ^{(1)}\) is \(\eta _{r+k}^{(1)} = - \nabla \rho _{k} \cdot {\widetilde{\mathbf{F}}}_r\). \(\blacksquare \)

The following two lemmas deal with vector fields having a Lie symmetry up to order \(r+m\).

Lemma 20

Let us consider \(m\in \mathbb {N}\) and assume that there exists \({\mathbf{U}}=\sum _{j=1}^{m}{\mathbf{U}}_j\), with \({\mathbf{U}}_j\in \mathcal {Q}_j^{\mathbf{t}}\), such that

$$\begin{aligned} \mathcal {J}^{r+m}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] \right) = \mathcal {J}^{r+m}\left( \nu {\mathbf{F}} \right) , \ \text { for some }\nu =\sum _{j=1}^{m}\nu _j, \text { with } \nu _j\in \mathcal {P}_j^{\mathbf{t}}. \end{aligned}$$

Then, for any \(\mu =\sum _{j=1}^{m}\mu _j\), with \(\mu _j\in \mathcal {P}_j^{\mathbf{t}}\), \(l\ge 0\), and \(k=l+1,\dots ,l+m\), we have:

$$\begin{aligned} \left( T_{\mathbf{U}}^{(l)}\left( \mu {\mathbf{F}} \right) \right) _{r+k}= & {} \sum _{j=l+1}^{k}\mu _{j}^{(l)}{\mathbf{F}}_{r+k-j}, \end{aligned}$$

for some \(\mu _{j}^{(l)} \in \mathcal {P}_{j}^{{\mathbf{t}}}\). Moreover, \(\mu _{{j}}^{(l)}\) depends univocally on \({\mathbf{U}}_1,\dots ,{\mathbf{U}}_{{j}-l},\nu _1,\dots ,\nu _{{j}-l},\mu _1,\dots ,\mu _{{j}-l}\).

Proof

We use induction on l.

  • For \(l=0\), the result is trivial because \(\left( T_{\mathbf{U}}^{(0)}\left( \mu {\mathbf{F}} \right) \right) _{r+k}=\left( \mu {\mathbf{F}} \right) _{r+k}=\sum _{j=1}^{k}\mu _{j}{\mathbf{F}}_{r+k-j}\).

  • Assume that the result is true for \(l-1\), being \(l>0\). Then:

    $$\begin{aligned} \left( T_{\mathbf{U}}^{(l)}\left( \mu {\mathbf{F}} \right) \right) _{r+k}= & {} \sum _{{j}=1}^{k-l} \left[ \left( T_{\mathbf{U}}^{(l-1)}\left( \mu {\mathbf{F}} \right) \right) _{r+k-{j}},{\mathbf{U}}_{j} \right] \\= & {} \sum _{{i}=l}^{k-1} \sum _{{j}=1}^{k-{i}} \left[ \mu _{{i}}^{(l-1)} {\mathbf{F}}_{r+k-{i}-{j}},{\mathbf{U}}_{j} \right] \\= & {} \sum _{{i}=l}^{k-1} \left( \sum _{{j}=1}^{k-{i}} \left( \nabla \mu _{{i}}^{(l-1)} \cdot {\mathbf{U}}_{j} \right) {\mathbf{F}}_{r+k-{i}-{j}} + \mu _{{i}}^{(l-1)} \sum _{{j}=1}^{k-{i}} \left[ {\mathbf{F}}_{r+k-{i}-{j}},{\mathbf{U}}_{j} \right] \right) \\= & {} \sum _{{i}=l}^{k-1} \left( \sum _{{j}=1}^{k-{i}} \left( \nabla \mu _{{i}}^{(l-1)} \cdot {\mathbf{U}}_{j} \right) {\mathbf{F}}_{r+k-{i}-{j}} \right) + \sum _{{i}=l}^{k-1}\mu _{{i}}^{(l-1)} \left[ {\mathbf{F}},{\mathbf{U}} \right] _{r+k-{i}} . \end{aligned}$$

    As \(\mathcal {J}^{r+m}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] \right) =\mathcal {J}^{r+m}\left( \nu {\mathbf{F}} \right) \), then \(\left[ {\mathbf{F}},{\mathbf{U}} \right] _{r+k-{i}} = \left( \nu {\mathbf{F}} \right) _{r+k-{i}} = \sum _{{j}=1}^{k-{i}} \nu _{j} {\mathbf{F}}_{r+k-{i}-{j}}\) for \(k=l+1,\dots ,l+m\). Hence:

    $$\begin{aligned} \left( T_{\mathbf{U}}^{(l)}\left( \mu {\mathbf{F}} \right) \right) _{r+k}= & {} \sum _{{i}=l}^{k-1}\sum _{{j}=1}^{k-{i}} \left( \left( \nabla \mu _{{i}}^{(l-1)}\cdot {\mathbf{U}}_{j} \right) + \mu _{i}^{(l-1)}\nu _{j} \right) {\mathbf{F}}_{r+k-{i}-{j}}\\= & {} \sum _{{j}=l+1}^{k}\left( \sum _{{i}=l}^{{j}-1} \left( \left( \nabla \mu _{{i}}^{(l-1)}\cdot {\mathbf{U}}_{{j}-{i}} \right) + \mu _{i}^{(l-1)}\nu _{{j}-{i}} \right) \right) {\mathbf{F}}_{r+k-{j}}, \end{aligned}$$

    and the result holds by defining \(\mu _{{j}}^{(l)}:=\sum _{{i}=l}^{{j}-1} \left( \left( \nabla \mu _{{i}}^{(l-1)}\cdot {\mathbf{U}}_{{j}-{i}} \right) + \mu _{i}^{(l-1)}\nu _{{j}-{i}} \right) \in \mathcal {P}_{j}^{{\mathbf{t}}}\), that depends univocally on \({\mathbf{U}}_1,\dots ,{\mathbf{U}}_{{j}-l},\nu _1,\dots ,\nu _{{j}-l},\mu _1,\dots ,\mu _{{j}-l}\).

\(\blacksquare \)

Lemma 21

Let us consider \(m\in \mathbb {N}\) and assume that there exists \({\mathbf{U}}=\sum _{j=1}^{m+1}{\mathbf{U}}_j\), with \({\mathbf{U}}_j\in \mathcal {Q}_j^{\mathbf{t}}\), such that

$$\begin{aligned} \mathcal {J}^{r+m}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] \right) = \mathcal {J}^{r+m}\left( \nu {\mathbf{F}} \right) , \ \text { for some } \ \nu = \sum _{j=1}^{m}\nu _j, \text { with } \nu _j\in \mathcal {P}_j^{\mathbf{t}}. \end{aligned}$$

Then:

  1. (a)

    For any \(\mu = \sum _{j=1}^{m+1}\mu _j\), with \(\mu _j\in \mathcal {P}_j^{\mathbf{t}}\), there exists \(\lambda = \sum _{j=1}^{m+1}\lambda _j\), with \(\lambda _j\in \mathcal {P}_j^{\mathbf{t}}\), such that

    $$\begin{aligned} \mathcal {J}^{r+m+1} \left( {\mathbf{U}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) \right) = \mathcal {J}^{r+m+1} \left( \left[ {\mathbf{F}},{\mathbf{U}} \right] +(1+\lambda ){\mathbf{F}} \right) . \end{aligned}$$
    (21)
  2. (b)

    For any \(\lambda = \sum _{j=1}^{m+1}\lambda _j\), with \(\lambda _j\in \mathcal {P}_j^{\mathbf{t}}\), there exists \(\mu = \sum _{j=1}^{m+1}\mu _j\), with \(\mu _j\in \mathcal {P}_j^{\mathbf{t}}\), such that (21) holds.

Proof

As \([{\mathbf{F}},{\mathbf{U}}]_{r+k}=\left( \nu {\mathbf{F}} \right) _{r+k}\) for \(k=1,\dots , m\), it can be shown that

$$\begin{aligned} \left( T_{\mathbf{U}}^{(l)}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] \right) \right) _{r+k} = \left( T_{\mathbf{U}}^{(l)}\left( \nu {\mathbf{F}} \right) \right) _{r+k}, \end{aligned}$$

for all \(l\ge 0\), \(k=l+1,\dots ,l+m\). Using that

$$\begin{aligned} {\mathbf{U}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) = {\mathbf{F}}+ \left[ {\mathbf{F}},{\mathbf{U}} \right] + \mu {\mathbf{F}}+ \sum _{l=1}^{\infty }{\textstyle {\frac{1}{(l+1)!}}} T_{\mathbf{U}}^{(l)}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] + (l+1) \mu {\mathbf{F}} \right) , \end{aligned}$$

we obtain

$$\begin{aligned} \left( {\mathbf{U}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) \right) _{r+k}= & {} {\mathbf{F}}_{r+k} + \left( \left[ {\mathbf{F}},{\mathbf{U}} \right] +\mu {\mathbf{F}} \right) _{r+k}\\&+ \sum _{l=1}^{k-1} \frac{1}{(l+1)!} \left( T_{\mathbf{U}}^{(l)}\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] +(l+1)\mu {\mathbf{F}} \right) \right) _{r+k}\\= & {} {\mathbf{F}}_{r+k}+\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] +\mu {\mathbf{F}} \right) _{r+k}\\&+\sum _{l=1}^{k-1} \frac{1}{(l+1)!} \left( T_{\mathbf{U}}^{(l)}\left( (\nu +(l+1)\mu ){\mathbf{F}} \right) \right) _{r+k}. \end{aligned}$$

From Lemma 20, we get:

$$\begin{aligned} \left( {\mathbf{U}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) \right) _{r+k}= & {} {\mathbf{F}}_{r+k}+\left( \left[ {\mathbf{F}},{\mathbf{U}} \right] +\mu {\mathbf{F}} \right) _{r+k} +\sum _{l=1}^{k-1}\sum _{j=l+1}^{k}\mu _{j}^{(l)}{\mathbf{F}}_{r+k-j}\\= & {} {\mathbf{F}}_{r+k}+\left[ {\mathbf{F}},{\mathbf{U}} \right] _{r+k} +\sum _{j=1}^{k}\mu _{j}{\mathbf{F}}_{r+k-j} +\sum _{j=2}^{k}\sum _{l=1}^{j-1}\mu _{j}^{(l)}{\mathbf{F}}_{r+k-j}\\= & {} {\mathbf{F}}_{r+k}+\left[ {\mathbf{F}},{\mathbf{U}} \right] _{r+k}+ \sum _{j=1}^{k}\left( \mu _{j}+ \sum _{l=1}^{j-1}\mu _{j}^{(l)} \right) {\mathbf{F}}_{r+k-j}. \end{aligned}$$

Notice that \(\mu _{j}^{(l)}\) depends univocally on \({\mathbf{U}}_1,\dots ,{\mathbf{U}}_{{j}-1},\nu _1,\dots ,\nu _{{j}-1},\mu _1,\dots ,\mu _{{j}-1}\). On the other hand, we have:

$$\begin{aligned} \left( \left[ {\mathbf{F}},{\mathbf{U}} \right] +(1+\lambda ){\mathbf{F}} \right) _{r+k}= & {} {\mathbf{F}}_{r+k}+\left[ {\mathbf{F}},{\mathbf{U}} \right] _{r+k}+\left( \lambda {\mathbf{F}} \right) _{r+k}={\mathbf{F}}_{r+k}+\left[ {\mathbf{F}},{\mathbf{U}} \right] _{r+k}+\sum _{j=1}^{k}\lambda _j{\mathbf{F}}_{r+k-j}. \end{aligned}$$

To prove item (a), it is enough to define \(\lambda _j=\mu _{j}+ \sum _{l=1}^{j-1}\mu _{j}^{(l)}\), for \(j=1,\dots , k\).

To prove item (b), it is enough to solve the equation \(\lambda _j=\mu _j+ \sum _{l=1}^{j-1}\mu _{j}^{(l)}\) (this can be done because \(\mu _{j}^{(l)}\) depends univocally on \({\mathbf{U}}_1,\dots ,{\mathbf{U}}_{{j}-1},\nu _1,\dots ,\nu _{{j}-1},\mu _1,\dots ,\mu _{{j}-1}\)) and define \(\lambda _j=\mu _{j}+ \sum _{l=1}^{j-1}\mu _{j}^{(l)}\), for \(j=1,\dots , k\). \(\blacksquare \)

B The Range of \(\overline{\mathcal {NL}}^{(N)}\)

In this appendix, we show that \({\mathrm {Range}}(\overline{\mathcal {NL}}^{(N)})={\mathrm {Range}}(\overline{\mathcal {L}}^{(N)})\). This is a consequence of Propositions 24 and 25.

The following propositions are necessary to prove Propositions 24 and 25.

Proposition 22

Let us consider the vector field \({\mathbf{F}}\) given in (6). Then, for each \({\widetilde{\mathbf{U}}}\in \bigoplus _{j=1}^m\mathcal {R}_j^{\mathbf{t}}\) and \({\widetilde{\lambda }}\in \bigoplus _{j=1}^{m}\mathcal {O}_j^{\mathbf{t}}\) (\(m\in \mathbb {N}\)), there exist \({\widetilde{\mathbf{V}}}\in \bigoplus _{j=1}^{m}\widehat{\mathcal {R}}_j^{\mathbf{t}}\) and \({\widetilde{\nu }}\in \bigoplus _{j=1}^{m}\widehat{\mathcal {O}}_j^{\mathbf{t}}\) such that

$$\begin{aligned} \mathcal {J}^{r+m}\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +{\widetilde{\lambda }}{\mathbf{F}}} \right) = \mathcal {J}^{r+m}\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\mathbf{F}}} \right) . \end{aligned}$$

Proof

Let us denote

$$\begin{aligned} \kappa :=\min \left\{ j\in \mathbb {N}:{\mathrm {Proj}}_{{\mathrm {Range}}\left( {\ell }_{j-r} \right) } \left( {\widetilde{\lambda }}_j \right) \ne 0 \ \text { or } \ {\mathrm {Proj}}_{{\mathrm {Ker}}\left( {\ell }_{j-r} \right) {\widetilde{\mathbf{F}}}_r} \left( {\widetilde{\mathbf{U}}}_j \right) \ne {\mathbf{0}} \right\} . \end{aligned}$$

Observe that \(\kappa \le m\), otherwise \({\widetilde{\mathbf{V}}}={\widetilde{\mathbf{U}}}\) and \({\widetilde{\nu }}={\widetilde{\lambda }}\).

From (11), we can write \({\widetilde{\lambda }}_{\kappa } = {\widetilde{\lambda }}_{\kappa }^{(1)} + {\widetilde{\lambda }}_{\kappa }^{(2)}\), where \({\widetilde{\lambda }}_{\kappa }^{(1)} = \nabla {\overline{\rho }}\cdot {\widetilde{\mathbf{F}}}_r \in {\mathrm {Range}}\left( \ell ^{(\texttt {e})}_{\kappa -r} \right) \) (\({\overline{\rho }}\in \mathcal {E}_{\kappa -r}^{\mathbf{t}}\)) and \({\widetilde{\lambda }}_{\kappa }^{(2)} \in \widehat{\mathcal {O}}_{\kappa }^{\mathbf{t}}\). We observe that \({\overline{\rho }}=0\) if \({\widetilde{\lambda }}_{\kappa }^{(1)} = 0\), and \({\overline{\rho }}\in \mathcal {E}_{\kappa -r}^{\mathbf{t}}{\setminus } {\mathrm {Ker}}\left( {\ell }_{\kappa -r} \right) \) otherwise.

Moreover, by (13), we can write \({\widetilde{\mathbf{U}}}_{\kappa } = {\widetilde{\mathbf{U}}}_{\kappa }^{(1)} + {\widetilde{\mathbf{U}}}_{\kappa }^{(2)}\), where \({\widetilde{\mathbf{U}}}_{\kappa }^{(1)} = {\overline{\zeta }}{\widetilde{\mathbf{F}}}_r\in {\mathrm {Ker}}\left( \ell ^{(\texttt {e})}_{\kappa -r} \right) {\widetilde{\mathbf{F}}}_r\) (\({\overline{\zeta }}\in {\mathrm {Ker}}\left( \ell ^{(\texttt {e})}_{\kappa -r} \right) \)) and \({\widetilde{\mathbf{U}}}_{\kappa }^{(2)} \in \widehat{\mathcal {R}}_{\kappa }^{\mathbf{t}}\).

Let us denote \({\widetilde{\mathbf{F}}}\) the reversible part of \({{\mathbf{F}}}\) and define \({\widetilde{\mathbf{V}}}:= {\widetilde{\mathbf{U}}}- ({\overline{\rho }}+{\overline{\zeta }}){\widetilde{\mathbf{F}}}\), where

$$\begin{aligned} {\widetilde{\nu }}:= {\widetilde{\lambda }}- \nabla {\overline{\rho }}\cdot {\widetilde{\mathbf{F}}}- \nabla {\overline{\zeta }}\cdot {\widetilde{\mathbf{F}}}. \end{aligned}$$

From Lemma 5, we obtain:

$$\begin{aligned} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +{\widetilde{\lambda }}{\mathbf{F}}} \right) _{r+\kappa }= & {} \left( \left[ {\widetilde{\mathbf{F}}},{\widetilde{\mathbf{U}}} \right] +{\widetilde{\lambda }}{\widetilde{\mathbf{F}}} \right) _{r+\kappa } = \left( \left[ {\widetilde{\mathbf{F}}},{\widetilde{\mathbf{V}}}+({\overline{\rho }}+{\overline{\zeta }}){\widetilde{\mathbf{F}}} \right] +{\widetilde{\lambda }}{\widetilde{\mathbf{F}}} \right) _{r+\kappa }\\= & {} \left( \left[ {\widetilde{\mathbf{F}}},{\widetilde{\mathbf{V}}} \right] +\left[ {\widetilde{\mathbf{F}}},({\overline{\rho }}+{\overline{\lambda }}){\widetilde{\mathbf{F}}} \right] +{\widetilde{\lambda }}{\widetilde{\mathbf{F}}} \right) _{r+\kappa } \\= & {} \left( \left[ {\widetilde{\mathbf{F}}},{\widetilde{\mathbf{V}}} \right] + \left( {\widetilde{\lambda }}-\nabla {\overline{\rho }}\cdot {\widetilde{\mathbf{F}}}- \nabla {\overline{\zeta }}\cdot {\widetilde{\mathbf{F}}} \right) {\widetilde{\mathbf{F}}} \right) _{r+\kappa } \\= & {} \left( \left[ {\widetilde{\mathbf{F}}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\widetilde{\mathbf{F}}} \right) _{r+\kappa } \\= & {} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\mathbf{F}}} \right) _{r+\kappa }. \end{aligned}$$

To complete the proof, it is enough to observe that:

$$\begin{aligned} {\widetilde{\mathbf{V}}}_{\kappa }= & {} {\widetilde{\mathbf{U}}}_{\kappa }^{(1)} + {\widetilde{\mathbf{U}}}_{\kappa }^{(2)} - ({\overline{\rho }}+{\overline{\zeta }}){\widetilde{\mathbf{F}}}_r = {\widetilde{\mathbf{U}}}_{\kappa }^{(2)} - {\overline{\rho }}{\widetilde{\mathbf{F}}}_r \in \widehat{\mathcal {R}}_{\kappa }^{\mathbf{t}},\\ {\widetilde{\nu }}_{\kappa }= & {} {\widetilde{\lambda }}_{\kappa }^{(1)} + {\widetilde{\lambda }}_{\kappa }^{(2)} - \nabla {\overline{\rho }}\cdot {\widetilde{\mathbf{F}}}_r - \nabla {\overline{\zeta }}\cdot {\widetilde{\mathbf{F}}}_r = {\widetilde{\lambda }}_{\kappa }^{(2)} \in \widehat{\mathcal {O}}_{\kappa -r}^{\mathbf{t}}. \end{aligned}$$

\(\blacksquare \)

Proposition 23

Let us assume that the vector field \({\mathbf{F}}\) given in (6) is \(R_x\)-reversible up to order \(r+N-1\), with \(N\in \mathbb {N}\). Then, for all \({\widetilde{\mathbf{U}}}\in \bigoplus _{j=1}^N \widehat{\mathcal {R}}_j^{\mathbf{t}}\) and \({\widetilde{\mu }}\in \bigoplus _{j=1}^N \widehat{\mathcal {O}}_j^{\mathbf{t}}\) such that \(({\widetilde{\mathbf{U}}},{\widetilde{\mu }})\) belongs to the domain of \(\overline{\mathcal {NL}}^{(N)}\), there exists \(\lambda \in \bigoplus _{j=1}^{N}\mathcal {P}_j^{\mathbf{t}}\) such that

$$\begin{aligned} \mathcal {J}^{r+N} \left( {\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) \right) = \mathcal {J}^{r+N} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+\lambda ){\mathbf{F}} \right) . \end{aligned}$$

Proof

We use induction on N. If \(N=1\), the result is trivial. Moreover

$$\begin{aligned} \left( {\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) \right) _{r+1} = {\mathbf{F}}_{r+1} + \left( [{\mathbf{F}},{\widetilde{\mathbf{U}}}]+{\widetilde{\mu }}{\mathbf{F}} \right) _{r+1}, \end{aligned}$$

and it is enough to take \(\lambda _1={\widetilde{\mu }}_1\).

Now, let us consider \(N>1\) and assume that there exists \(\lambda = \sum _{j=1}^{N-1} \lambda _j\), such that

$$\begin{aligned} \mathcal {J}^{r+N-1} \left( {\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) \right) = \mathcal {J}^{r+N-1} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+\lambda ){\mathbf{F}} \right) . \end{aligned}$$

The hypothesis \(\mathcal {J}^{r+N-1} \left( \overline{{\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) } \right) ={\mathbf{0}}\) yields. If we take \(\lambda =\bar{\lambda }+\tilde{\lambda }\), where \(\bar{\lambda }=\sum _{j=1}^{N-1}\bar{\lambda }_j\), \(\bar{\lambda }_j\in \mathcal {E}_j^{\mathbf{t}}\) and \(\tilde{\lambda }=\sum _{j=1}^{N-1}\tilde{\lambda }_j\), \(\tilde{\lambda }_j\in \mathcal {O}_j^{\mathbf{t}}\) we obtain

$$\begin{aligned} \mathcal {J}^{r+N-1} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+\lambda ){\mathbf{F}}} \right) =\mathcal {J}^{r+N-1} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+{\widetilde{\lambda }}){\mathbf{F}} \right) ={\mathbf{0}}. \end{aligned}$$

Hence \(\mathcal {J}^{r+N-1} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +{\widetilde{\lambda }}{\mathbf{F}} \right) = {\mathbf{0}}\) and from Lemma 21 item (a), the statement holds for the value N. Consequently, we have

$$\begin{aligned} \mathcal {J}^{r+N} \left( {\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) \right)= & {} \mathcal {J}^{r+N} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+\lambda ){\mathbf{F}} \right) . \end{aligned}$$

\(\blacksquare \)

Next result shows that \({\mathrm {Range}}\left( \overline{\mathcal {NL}}^{(N)} \right) \subset {\mathrm {Range}}\left( \overline{\mathcal {L}}^{(N)} \right) \).

Proposition 24

Let us assume that the vector field \({\mathbf{F}}\) given in (6) is \(R_x\)-reversible up to order \(r+N-1\), with \(N\in \mathbb {N}\). Then for all generators \(({\widetilde{\mathbf{U}}},{\widetilde{\mu }})\), belonging to the domain of the nonlinear operator \(\overline{\mathcal {NL}}^{(N)}\), there exists \(({\widetilde{\mathbf{V}}},{\widetilde{\nu }})\), belonging to the domain of the linear operator \(\overline{\mathcal {L}}^{(N)}\), such that \(\overline{\mathcal {NL}}^{(N)}\left( {\widetilde{\mathbf{U}}},{\widetilde{\mu }} \right) =\overline{\mathcal {L}}^{(N)} \left( {\widetilde{\mathbf{V}}},{\widetilde{\nu }} \right) \).

Proof

By Proposition 23 there exists \(\lambda \in \bigoplus _{j=1}^{N}\mathcal {P}_j^{\mathbf{t}}\) such that

$$\begin{aligned} \mathcal {J}^{r+N} \left( {\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) \right) = \mathcal {J}^{r+N} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+\lambda ){\mathbf{F}} \right) . \end{aligned}$$

If we take \(\lambda =\bar{\lambda }+\tilde{\lambda }\), where \(\bar{\lambda }=\sum _{j=1}^{N-1}\bar{\lambda }_j\), \(\bar{\lambda }_j\in \mathcal {E}_j^{\mathbf{t}}\) and \(\tilde{\lambda }=\sum _{j=1}^{N-1}\tilde{\lambda }_j\), \(\tilde{\lambda }_j\in \mathcal {O}_j^{\mathbf{t}}\) we obtain

$$\begin{aligned} \mathcal {J}^{r+N} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+\lambda ){\mathbf{F}}} \right) =\mathcal {J}^{r+N} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +{\widetilde{\lambda }}{\mathbf{F}}} \right) +\mathcal {J}^{r+N} \left( \overline{(1+\bar{\lambda }){\mathbf{F}}} \right) . \end{aligned}$$

As \({\mathbf{F}}\) is \(R_x\)-reversible up to order \(r+N-1\), from Lemma 5(a) we obtain \(\mathcal {J}^{r+N} \left( \overline{(1+\bar{\lambda }){\mathbf{F}}} \right) ={\mathbf{0}}\) and by Proposition 22 there exist \({\widetilde{\mathbf{V}}}\in \bigoplus _{j=1}^{N}\widehat{\mathcal {R}}_j^{\mathbf{t}}\) and \({\widetilde{\nu }}\in \bigoplus _{j=1}^{N}\widehat{\mathcal {O}}_j^{\mathbf{t}}\) such that

$$\begin{aligned} \mathcal {J}^{r+N}\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +{\widetilde{\lambda }}{\mathbf{F}}} \right) = \mathcal {J}^{r+N}\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\mathbf{F}}} \right) . \end{aligned}$$

Hence \(\mathcal {J}^{r+N} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{U}}} \right] +(1+{\widetilde{\mu }}){\mathbf{F}}} \right) =\mathcal {J}^{r+N} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\mathbf{F}}} \right) \).

The hypothesis \(\mathcal {J}^{r+N-1} \left( \overline{{\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) } \right) ={\mathbf{0}}\) yields, since \((\tilde{{\mathbf{U}}},\tilde{\mu })\) belongs to the domain of \(\overline{\mathcal {NL}}^{(N)}\). Therefore \(\mathcal {J}^{r+N-1}\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\mathbf{F}}} \right) ={\mathbf{0}}\) and we prove that \(({\widetilde{\mathbf{V}}},{\widetilde{\nu }})\) belongs to the domain of \({\overline{\mathcal {L}}^{(N)}_{\scriptstyle {\left\{ {\widetilde{\mathbf{F}}}_r,\dots ,{\widetilde{\mathbf{F}}}_{r+N-1} \right\} }}}\), and \(\overline{\mathcal {NL}}^{(N)}\left( {\widetilde{\mathbf{U}}},{\widetilde{\mu }} \right) =\overline{\mathcal {L}}^{(N)}\left( {\widetilde{\mathbf{V}}},{\widetilde{\nu }} \right) \).

\(\blacksquare \)

In the following result, we prove that \({\mathrm {Range}}\left( \overline{\mathcal {L}}^{(N)} \right) \subset {\mathrm {Range}}\left( \overline{\mathcal {NL}}^{(N)} \right) \).

Proposition 25

Let us assume that the vector field \({\mathbf{F}}\) given in (15) is \(R_x\)-reversible up to order \(r+N-1\), with \(N\in \mathbb {N}\). Then for all generators \(\left( {\widetilde{\mathbf{V}}},{\widetilde{\nu }} \right) \) belonging to the domain of \(\overline{\mathcal {L}}^{(N)}\), there exists \(\left( {\widetilde{\mathbf{U}}},{\widetilde{\mu }} \right) \) belonging to the domain of the nonlinear operator \(\overline{\mathcal {NL}}^{(N)}\) such that \(\overline{\mathcal {L}}^{(N)}(\tilde{{\mathbf{V}}},\tilde{\nu })=\overline{\mathcal {NL}}^{(N)}({\widetilde{\mathbf{U}}},{\widetilde{\mu }})\).

Proof

We will prove that

$$\begin{aligned}&\mathcal {J}^{r+N-1}\left( \overline{{\widetilde{\mathbf{V}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) } \right) ={\mathbf{0}}\ \ \text { and }\\&\overline{\mathcal {L}}^{(N)}\left( {\widetilde{\mathbf{V}}},{\widetilde{\nu }} \right) ={\overline{\mathbf{F}}}_{r+N} -{\overline{{\widetilde{\mathbf{V}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) }}_{r+N}. \end{aligned}$$

As \(\left( {\widetilde{\mathbf{V}}},{\widetilde{\nu }} \right) \) belongs to the domain of the operator \(\overline{\mathcal {L}}^{(N)}_{\scriptstyle {\left\{ {\widetilde{\mathbf{F}}}_r,\dots ,{\widetilde{\mathbf{F}}}_{r+N-1} \right\} }}\), then we obtain \(\mathcal {J}^{r+N-1}\left( \overline{[{\mathbf{F}},{\widetilde{\mathbf{V}}}]+{\widetilde{\nu }}{\mathbf{F}}} \right) ={\mathbf{0}}\). Also, as \({\mathbf{F}}\) is \(R_x\)-reversible up to order \(r+N-1\), from Lemma 5 items (b) and (c), we get \(\mathcal {J}^{r+N-1}\left( [{\mathbf{F}},{\widetilde{\mathbf{V}}}]+{\widetilde{\nu }}{\mathbf{F}} \right) ={\mathbf{0}}\).

From Lemma 21 item (b), for \(m=N\), \(\lambda ={\widetilde{\nu }}\) there exists \(\mu =\sum _{j=1}^{N}\mu _j\), with \(\mu _j\in \mathcal {P}_j^{\mathbf{t}}\), such that

$$\begin{aligned} \mathcal {J}^{r+N} \left( {\widetilde{\mathbf{V}}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) \right) = \mathcal {J}^{r+N} \left( \left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +(1+{\widetilde{\nu }}){\mathbf{F}} \right) . \end{aligned}$$

In particular, as \({\mathbf{F}}\) is \((N-1)\)-\(R_x\)-reversible, we obtain \(\mathcal {J}^{r+N-1}\left( {\overline{\mathbf{F}}} \right) ={\mathbf{0}}\) and

$$\begin{aligned} {\mathbf{0}}= & {} \mathcal {J}^{r+N-1}\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +{\widetilde{\nu }}{\mathbf{F}}} \right) +\mathcal {J}^{r+N-1}\left( {\overline{\mathbf{F}}} \right) \\= & {} \mathcal {J}^{r+N-1} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +(1+{\widetilde{\nu }}){\mathbf{F}}} \right) = \mathcal {J}^{r+N-1} \left( \overline{{\widetilde{\mathbf{V}}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) } \right) . \end{aligned}$$

By Proposition 8 there exist \({\widetilde{\mathbf{U}}}\in \bigoplus _{j=1}^N\widehat{\mathcal {R}}_j^t\) and \({\widetilde{\mu }}\in \bigoplus _{j=1}^N\widehat{\mathcal {O}}_{j}^{\mathbf{t}}\) such that

$$\begin{aligned} \mathcal {J}^{r+N} \left( \overline{{\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) } \right) =\mathcal {J}^{r+N} \left( \overline{{\widetilde{\mathbf{V}}}{\, }_{ **}{\, }\left( (1+\mu ){\mathbf{F}} \right) } \right) = \mathcal {J}^{r+N} \left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +(1+{\widetilde{\nu }}){\mathbf{F}}} \right) . \end{aligned}$$

Therefore \(({\widetilde{\mathbf{U}}},{\widetilde{\mu }})\) belongs to the domain of nonlinear operator \(\overline{\mathcal {NL}}^{(N)}\). On the other hand

$$\begin{aligned} \overline{\mathcal {NL}}^{(N)}\left( {\widetilde{\mathbf{U}}},{\widetilde{\mu }} \right)= & {} -\left( \overline{{\widetilde{\mathbf{U}}}{\, }_{ **}{\, }\left( (1+{\widetilde{\mu }}){\mathbf{F}} \right) } \right) _{r+N}+\overline{{\mathbf{F}}}_{r+N}\\= & {} -\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +(1+{\widetilde{\nu }}){\mathbf{F}}} \right) _{r+N}+\overline{{\mathbf{F}}}_{r+N}\\= & {} -\left( \overline{\left[ {\mathbf{F}},{\widetilde{\mathbf{V}}} \right] +(1+{\widetilde{\nu }}){\mathbf{F}}} \right) _{r+N}=\mathcal {L}^{(N)}({\widetilde{\mathbf{V}}},{\widetilde{\nu }}). \end{aligned}$$

\(\blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algaba, A., Checa, I., Gamero, E. et al. Characterizing Orbital-Reversibility Through Normal Forms. Qual. Theory Dyn. Syst. 20, 38 (2021). https://doi.org/10.1007/s12346-021-00478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00478-6

Keywords

Navigation