Skip to main content
Log in

Qualitative Analysis of the Dynamic for the Nonlinear Korteweg–de Vries Equation with a Boundary Memory

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper addresses the impact of the presence of a boundary memory term in the third-order Korteweg–de Vries equation in a bounded interval \([0,\ell ]\). First, an overall literature review is provided. Indeed, a comprehensive discussion on the literature constitutes a survey part of the current paper. Thereafter, it is shown that the system under consideration possesses a unique solution under a smallness assumption on the initial data and an appropriate condition on the parameters and the kernel involved in the memory term. Last but not least, we demonstrate that the zero solution is exponentially stable as long as the length \(\ell \) is small enough by means of Lyapunov method, which permits to provide an estimate of the exponential decay rate. These findings improve and complement those of Zhang (in: Desch W, Kappel F, Kunisch K (eds) Proceedings of international conference on control and estimation of distributed parameter systems: nonlinear phenomena, International Series of Numerical Mathematics, vol 118, Birkhauser, Basel, pp 371–389, 1994) (resp. Baudouin et al. in IEEE Trans Autom Control 64:1403–1414, 2019), where no memory term is present (resp. a delay occurs instead of memory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to the current paper as no data were generated or analysed during this study.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Amendola, G., Fabrizio, M., Golden, J.M.: Thermodynamics of Materials with Memory: Theory and Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Apalara, T.A.: Well-posedness and exponential stability for a linear damped Timoshenko system with second sound thermoelasticity and internal distributed delay. Electron. J. Differ. Equ. 254, 1–15 (2014)

    MATH  Google Scholar 

  4. Biswas, A., Ekici, M., Sonmezoglu, A.: Gaussian solitary waves to Boussinesq equation with dual dispersion and logarithmic nonlinearity. Nonlinear Anal. Model. Control 23, 942–950 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Baudouin, L., Crépeau, E., Valein, J.: Two approaches for the stabilization of nonlinear KdV equation with boundary time-delay feedback. IEEE Trans. Autom. Control 64, 1403–1414 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Bona, J.L., Dougalis, V.A.: An initial- and boundary-value problem for a model equation for propagation of long waves. J. Math. Anal. Appl. 75, 503–522 (1980)

    MathSciNet  MATH  Google Scholar 

  7. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg–de Vries equation. Philos. Trans. R. Soc. Lond. A 278, 555–601 (1975)

    MathSciNet  MATH  Google Scholar 

  8. Bona, J.L., Sun, S.M., Zhang, B.Y.: Forced oscillations of a damped Korteweg–de Vries equation in a quarter plane. Commun. Contemp. Math. 5, 369–400 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Bona, J.L., Sun, S.M., Zhang, B.Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain. Commun. PDEs 8, 1391–1436 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Bona, J.L., Chen, H., Sun, S.M., Zhang, B.Y.: Comparison of quarter-plane and two-point boundary value problems: the KdV-equation. Discrete Contin. Dyn. Syst. Ser. B 7, 465–495 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Bona, J.L., Sun, S.M., Zhang, B.Y.: A nonhomogeneous boundary-value problem for the Korteweg–de Vries equation posed on a finite domain II. J. Differ. Equ. 247, 2558–2596 (2009)

    MATH  Google Scholar 

  12. Boussinesq, J.: Essai sur la théorie des eaux courantes. Mémoires Présentés par Divers Savants à l’Acad. des Sci. Inst. Nat. Fr. 23, 1–680 (1877)

  13. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitex. Springer, Berlin (2011)

    MATH  Google Scholar 

  14. Bubnov, B.A.: General boundary value problems for the Korteweg–de Vries equation in a bounded domain. Differ. Equ. 15, 26–31 (1979)

    MathSciNet  Google Scholar 

  15. Bubnov, B.A.: Boundary value problems for the alternative Korteweg–de Vries equation in a bounded domain. Dokl. Akad. Nauk SSSR 247, 272–275 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Bubnov, B.A.: Solvability in the large of nonlinear boundary value problems for the Korteweg–de Vries equation in a bounded domain. Differ. Equ. 16, 34–41 (1980)

    Google Scholar 

  17. Caicedo, M.C., Capistrano-Filho, R.A., Zhang, B.Y.: Control of the Korteweg–de Vries equation with Neumann boundary conditions. SIAM J. Control Optim. 55, 3503–3532 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Caicedo, M.C., Zhang, B.Y.: Well-posedness of a nonlinear boundary value problem for the Korteweg–de Vries equation on a bounded domain. J. Math. Anal. Appl. 448, 797–814 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Capistrano-Filho, R.A., Pazoto, A.F., Rosier, L.: internal controllability of the Korteweg–de Vries–Burgers equation on a bounded domain. ESAIM COCV ESAIM Control. Optim. Calc. Var. 21, 1076–1107 (2015)

  20. Capistrano-Filho, R.A., Sun, S.M., Zhang, B.Y.: General boundary value problems of the Korteweg–de Vries equation on a bounded domain. Math. Control Relat. Field 8, 583–605 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Capistrano-Filho, R.A., Zhang, B.Y.: Initial boundary value problem for Korteweg–de Vries equation: a review and open problems. São Paulo J. Math. Sci. 13, 402–417 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Cavaterra, C., Guidetti, D.: Identification of a convolution kernel in a control problem for the heat equation with a boundary memory term. Ann. Mat. 193, 779–816 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Cerpa, E.: Exact controllability of a nonlinear Korteweg–de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46, 877–899 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Cerpa, E., Coron, J.M.: Rapid stabilization for a Korteweg–de Vries equation from the left Dirichlet boundary condition. IEEE Trans. Autom. Control 58, 1688–1695 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Cerpa, E., Crépeau, E.: Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 457–475 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Cerpa, E., Rivas, I., Zhang, B.Y.: Boundary controllability of the Korteweg–de Vries equation on a bounded domain. SIAM J. Control Optim. 51, 2976–3010 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Cerpa, E.: Control of the Korteweg–de Vries equation: a tutorial. Math. Control Relat. Field 4, 45–99 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Chapouly, M.: Global controllability of a nonlinear Korteweg–de Vries equation. Commun. Contemp. Math. 11, 495–521 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Chang, H.C.: Nonlinear waves on liquid film surfaces-II. Flooding in a vertical tube. Chem. Eng. Sci. 41, 2463–2476 (1986)

    Google Scholar 

  30. Chu, J., Coron, J.M., Shang, P.: Asymptotic stability of a nonlinear Korteweg–de Vries equation with critical lengths. J. Differ. Equ. 259, 4045–4085 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Cohen, B.I., Krommes, J.A., Tang, W.M., Rosenbluth, M.N.: Nonlinear saturation of the dissipative trapped-ion mode by mode coupling. Nuclear Fusion 16, 971–992 (1976)

    Google Scholar 

  32. Colin, T., Ghidaglia, J.M.: Un problème aux limites pour l’équation de Korteweg–de Vries sur un intervalle born’e. Journées Equations aux Dérivés Partielles, No. III. Ecole Polytech., Palaiseau (1997)

  33. Colin, T., Ghidaglia, J.M.: Un problème mixte pour l’équation de Korteweg–de Vries sur un intervalle borné. C. R. Acad. Sci. Paris. Sér. I Math. 324, 599–603 (1997)

    MathSciNet  MATH  Google Scholar 

  34. Colin, T., Ghidaglia, J.M.: An initial-boundary-value problem for the Korteweg–de Vries equation posed on a finite interval. Adv. Differ. Equ. 6, 1463–1492 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Coron, J.M., Crépeau, E.: Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6, 367–398 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Coron, J.M., Lü, Q.: Local rapid stabilization for a Korteweg–de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102, 1080–1120 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Coron, J.M., Rivas, I., Xiang, S.: Local exponential stabilization for a class of Korteweg–de Vries equations by means of time-varying feedback laws. Anal. PDE 10, 1089–1122 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Crépeau, E.: Exact controllability of the Korteweg–de Vries equation around a non-trivial stationary solution. Int. J. Control 74, 1096–1106 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Crépeau, E.: Exact boundary controllability of the Korteweg–de Vries equation with a piecewise constant main coefficient. Syst. Control Lett. 97, 157–162 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    MathSciNet  MATH  Google Scholar 

  41. Dolapci, I.T., Yildirim, A.: Some exact solutions to the generalized Korteweg–de Vries equation and the system of shallow water wave equations. Nonlinear Anal. Model. Control 18, 27–36 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Erdoğan, M.B., Tzirakis, N.: Dispersive Partial Differential Equations. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  43. Faminskii, A.V.: The Cauchy problem and the mixed problem in the half strip for equation of Korteweg–de Vries type. Dinamika Sploshn. Sredy 50, 152–158 (1983)

    MathSciNet  Google Scholar 

  44. Faminskii, A.V.: A mixed problem in a semistrip for the Korteweg–de Vries equation and its generalizations. Dinamika Sploshn. Sredy 258, 54–94 (1988)

    Google Scholar 

  45. Faminskii, A.V.: On mixed problems for the Korteweg–de Vries equation with irregular boundary data. Dokl. Math. 59, 366–367 (1999)

    MathSciNet  Google Scholar 

  46. Faminskii, A.V.: On an initial boundary value problem in a bounded domain for the generalized Korteweg–de Vries equation. Funct. Differ. Equ. 8, 183–194 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Faminskii, A.V.: On two initial boundary value problems for the generalized KdV equation. Nonlinear Bound. Probl. 14, 58–71 (2004)

    MATH  Google Scholar 

  48. Faminskii, A.V.: Global well-posedness of two initial boundary-value problems for the Korteweg–de Vries equation. Differ. Integral Equ. 20, 601–642 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Faminskii, A.V.: Controllability problems for the Korteweg–de Vries equation with integral overdetermination. Differ. Equ. 55, 123–133 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Faminskii, A.V., Larkin, N.A.: Odd-order quasilinear evolution equations posed on a bounded interval. Bol. Soc. Paran. Mat. 28, 67–77 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Faminskii, A.V., Larkin, N.A.: Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron. J. Differ. Equ. 2010, 1–20 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Fokas, A.S., Himonas, A., Mantzavinos, D.: The Korteweg–de Vries equation on the half-line. Nonlinearity 29, 489–527 (2016)

    MathSciNet  MATH  Google Scholar 

  53. Giorgi, C., Naso, M.G.: Exponential stability of a linear viscoelastic bar with thermal memory. Annali di Matematica Pura ed Applicata (IV) CLXXVIII, 45–66 (2000)

    MathSciNet  MATH  Google Scholar 

  54. Glass, O., Guerrero, S.: Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot. Anal. 60, 61–100 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Glass, O., Guerrero, S.: Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition. Syst. Control Lett. 59, 390–395 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  57. Himonas, A.A., Mantzavinos, D., Yan, F.: The Korteweg–de Vries equation on an interval. J. Math. Phys. 60, 051507 (2019). https://doi.org/10.1063/1.5080366

    Article  MathSciNet  MATH  Google Scholar 

  58. Holmer, J.: The initial-boundary value problem for the Korteweg–de Vries equation. Commun. Partial Differ. Equ. 31, 1151–1190 (2006)

    MathSciNet  MATH  Google Scholar 

  59. Jeffrey, A., Kakutani, T.: Weak nonlinear dispersive waves: a discussion centered around the Korteweg–de Vries equation. SIAM Rev. 14, 582–643 (1972)

    MathSciNet  MATH  Google Scholar 

  60. Jia, C., Zhang, B.Y.: Boundary stabilization of the Korteweg–de Vries equation and the Korteweg–de Vries–Burgers equation. Acta Appl. Math. 118, 25–47 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Jia, C., Rivas, I., Zhang, B.Y.: Lower regularity solutions of a class of non-homogeneous boundary value problems of the Korteweg–de Vries equation on a finite domain. Adv. Differ. Equ. 19, 559–584 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Jia, C.: Boundary feedback stabilization of the Korteweg–de Vries–Burgers equation posed on a finite interval. J. Math. Anal. Appl. 444, 624–647 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Khablov, V.V.: A boundary value problem for the Korteweg–de Vries equation in a bounded domain. In: Application of the Methods of Functional Analysis to Problems of Mathematical Physics and Numerical Analysis, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, pp. 137–141 (1979)

  64. Khablov, V.V.: Correct formulations of boundary problems for the modified Korteweg–de Vries equation. Proc. Sem. S. L. Sobolev 2, 137–146 (1979)

    MathSciNet  MATH  Google Scholar 

  65. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    MathSciNet  MATH  Google Scholar 

  66. Kramer, E., Zhang, B.Y.: Nonhomogeneous boundary value problems for the Korteweg–de Vries equation on a bounded domain. J. Syst. Sci. Complex. 23, 499–526 (2010)

    MathSciNet  MATH  Google Scholar 

  67. Kramer, E., Rivas, I., Zhang, B.Y.: Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg–de Vries equation on a finite domain. ESAIM Control Optim. Calc. Var. 19, 358–384 (2013)

    MathSciNet  MATH  Google Scholar 

  68. Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction–diffusion systems. Prog. Theor. Phys. 54, 687–699 (1975)

    Google Scholar 

  69. Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. Suppl. 64, 346–367 (1978)

    Google Scholar 

  70. Larkin, N.A.: Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains. J. Math. Anal. Appl. 297, 169–185 (2004)

    MathSciNet  MATH  Google Scholar 

  71. Larkin, N.A.: Modified KdV equation with a source term in a bounded domain. Math. Methods Appl. Sci. 29, 751–765 (2006)

    MathSciNet  MATH  Google Scholar 

  72. Larkin, N.A.: Correct initial boundary value problems for dispersive equations. J. Math. Anal. Appl. 344, 079–1092 (2008)

    MathSciNet  Google Scholar 

  73. Liu, W.J., Krstic, M.: Global boundary stabilization of the Korteweg–de Vries–Burgers equation. Comput. Appl. Math. 21, 315–354 (2002)

    MathSciNet  MATH  Google Scholar 

  74. Larkin, N.A., Luchesi, J.: General mixed problems for the KdV equations on bounded intervals. Electron. J. Differ. Equ. 2010, 1–17 (2010)

    MathSciNet  MATH  Google Scholar 

  75. Larkin, N.A., Luchesi, J.: Initial-boundary value problems for generalized dispersive equations of higher orders posed on bounded intervals. Appl. Math. Optim. (2019). https://doi.org/10.1007/s00245-019-09579-w

    Article  MATH  Google Scholar 

  76. Li, X., Du, Z., Liu, J.: Existence of solitary wave solutions for a nonlinear fifth–order KdV equation. Qual. Theory Dyn. Syst., 19(1), Paper No. 24 (2020)

  77. Lighthill, M.J.: On waves generated in dispersive systems to travelling effects, with applications to the dynamics of rotating fluids. J. Fluid Mech. 27, 725–752 (1967)

    MATH  Google Scholar 

  78. Linares, F., Pazoto, A.F.: On the exponential decay of the critical generalized Korteweg–de Vries with localized damping. Proc. Am. Math. Soc. 135, 1515–1522 (2007)

    MathSciNet  MATH  Google Scholar 

  79. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, New York (2009)

    MATH  Google Scholar 

  80. Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems, Chapman and Hall/CRC Res. Notes Math., vol. 398, Chapman and Hall (1999)

  81. Lo, A., Tatar, N.: Uniform stability of a laminated beam with structural memory. Qual. Theory Dyn. Syst. 15, 517–540 (2016)

    MathSciNet  MATH  Google Scholar 

  82. Marx, S., Cerpa, E., Prieur, C., Andrieu, V.: Global stabilization of the Korteweg–de Vries equation with saturating distributed control. SIAM J. Control. Optim. 55, 1452–1480 (2017)

    MathSciNet  MATH  Google Scholar 

  83. Marx, S., Cerpa, E.: Output feedback stabilization of the Korteweg–de Vries equation. Automatica 87, 210–217 (2018)

    MathSciNet  MATH  Google Scholar 

  84. Massarolo, C.P., Menzala, G.P., Pazoto, A.F.: On the uniform decay for the Korteweg–de Vries equation with weak damping. Math. Methods Appl. Sci. 30, 1419–1435 (2007)

    MathSciNet  MATH  Google Scholar 

  85. Massarolo, C.P., Menzala, G.P., Pazoto, A.F.: A coupled system of Korteweg–de Vries equations as singular limit of the Kuramoto–Sivashinsky equations. Adv. Differ. Equ. 12, 541–572 (2007)

    MathSciNet  MATH  Google Scholar 

  86. Massarolo, C.P., Pazoto, A.F.: Uniform stabilization of a nonlinear coupled system of Korteweg–de Vries equations as a singular limit of the Kuramoto–Sivashinsky system. Diff. Integral Equ. 22, 53–68 (2009)

    MathSciNet  MATH  Google Scholar 

  87. Messaoudi, S.A., Farg, A., Doudi, N.: Well posedness and exponential stability in a wave equation with a strong damping and a strong delay. J. Math. Phys. 57, 111501 (2016)

    MathSciNet  MATH  Google Scholar 

  88. Micu, S., Ortega, J.H., Pazoto, A.F.: On the controllability of a coupled system of two Korteweg–de Vries equations. Commun. Contemp. Math. 11, 799–827 (2009)

    MathSciNet  MATH  Google Scholar 

  89. Micu, S., Ortega, J.H.: On the controllability of a coupled system of Korteweg–de Vries equations. In: Mathematical and Numerical Aspects of Wave Propagation (Santiago de Compostela, 2000), pp. 1020–1024. SIAM, Philadelphia (2000)

  90. Miles, J.W.: The Korteweg–de Vries equation: a historical essay. J. Fluid Mech. 106, 131–147 (1981)

    MATH  Google Scholar 

  91. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    MathSciNet  MATH  Google Scholar 

  92. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with variable coefficients and boundary condition of memory type. Asymptot. Anal. 50, 31–67 (2006)

    MathSciNet  MATH  Google Scholar 

  93. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed memory. Differ. Integral Equ. 21, 935–958 (2008)

    MATH  Google Scholar 

  94. Pazoto, A.F.: Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM Control Optim. Calc. Var. 11, 473–486 (2005)

    MathSciNet  MATH  Google Scholar 

  95. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  96. Perla Menzala, G., Vasconcellos, C.F., Zuazua, E.: Stabilization of the Korteweg–de Vries equation with localized damping. Q. Appl. Math. 60, 111–129 (2002)

    MathSciNet  MATH  Google Scholar 

  97. Rayleigh, (Strutt, J.W.): On waves. Philos. Mag. 1, 257–271 (1876)

  98. Rivas, I., Usman, M., Zhang, B.Y.: Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg–de Vries equation on a finite domain. Math. Control Relat. Fields 1, 61–81 (2011)

    MathSciNet  MATH  Google Scholar 

  99. Rosier, L.: Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim. Calc. Var. 2, 33–55 (1997)

    MathSciNet  MATH  Google Scholar 

  100. Rosier, L.: Control of the surface of a fluid by a wavemaker. ESAIM Control Optim. Calc. Var. 10, 346–380 (2004)

    MathSciNet  MATH  Google Scholar 

  101. Rosier, L., Zhang, B.Y.: Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J. Control Optim. 45, 927–956 (2006)

    MathSciNet  MATH  Google Scholar 

  102. Rosier, L., Zhang, B.Y.: Control and stabilization of the Korteweg–de Vries equation: recent progresses. J. Syst. Sci. Complex. 22, 647–682 (2009)

    MathSciNet  MATH  Google Scholar 

  103. Russell, D.L., Zhang, B.Y.: Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31, 659–676 (1993)

    MathSciNet  MATH  Google Scholar 

  104. Russell, D.L., Zhang, B.Y.: Smoothing and decay properties of the Korteweg–de Vries equation on a periodic domain with point dissipation. J. Math. Anal. Appl. 190, 449–488 (1995)

    MathSciNet  MATH  Google Scholar 

  105. Russell, D.L., Zhang, B.Y.: Exact controllability and stabilizability of the Korteweg–de Vries equation. Trans. Am. Math. Soc. 348, 3643–3672 (1996)

    MathSciNet  MATH  Google Scholar 

  106. Russell, J.S.: Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies and have not previously been reduced into conformity with the laws of resistance of fluids. Trans. R. Soc. Lond. Edinb. XIV109, 47–109 (1840)

    Google Scholar 

  107. Russell, J.S.: Report on waves, Rept. 14th Meeting of the British Association for the Advancement of Science, John Murray, London, pp. 311–390 (1844)

  108. Shahrouzi, M.: Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback. Ann. Mat. Pura Appl. 196, 1877–1886 (2017)

    MathSciNet  MATH  Google Scholar 

  109. Sivashinsky, G.: Nonlinear analysis for hydrodynamic instability in Laminar flames. Derivation of basic equations. Acta Astron. 4, 1177–1206 (1977)

    MathSciNet  MATH  Google Scholar 

  110. Sivashinsky, G.I.: On flame propagation under conditions of stoichiometry. SIAM J. Appl. Math. 39, 67–82 (1980)

    MathSciNet  MATH  Google Scholar 

  111. Sun, S.M.: The Korteweg–de Vries equation on a periodic domain with singular-point dissipation. SIAM J. Control Optim. 34, 892–912 (1996)

    MathSciNet  MATH  Google Scholar 

  112. Tang, S., Chu, J., Shang, P., Coron, J.M.: Asymptotic stability of a Korteweg–de Vries equation with a two-dimensional center manifold. Adv. Nonlinear Anal. 7(4), 497–515 (2018)

    MathSciNet  MATH  Google Scholar 

  113. Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. American Mathematical Society, Providence (2006)

    MATH  Google Scholar 

  114. Topper, J., Kawahara, T.: Approximate equations for long nonlinear waves on a viscous fluid. J. Phys. Soc. Jpn. 44, 663–666 (1978)

    MathSciNet  MATH  Google Scholar 

  115. Usman, M., Zhang, B.Y.: Forced oscillations of a class of nonlinear dispersive wave equations and their stability. J. Syst. Sci. Complex. 20, 284–292 (2007)

    MathSciNet  MATH  Google Scholar 

  116. Usman, M., Zhang, B.Y.: Forced oscillations of the Korteweg–de Vries equation on a bounded domain and their stability. Discrete Contin. Dyn. Syst. 26, 1509–1523 (2010)

    MathSciNet  MATH  Google Scholar 

  117. Valein, J.: Stabilization of the Korteweg–de Vries equation with internal time-delay feedback, 2019. hal-02020757 (2019)

  118. Whiham, G.B.: Non-linear dispersive waves. Proc. R. Soc. Ser. A 283, 238–261 (1965)

    MathSciNet  Google Scholar 

  119. Whitham, G.B.: Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley, New York (1974)

    MATH  Google Scholar 

  120. Xiang, S.: Small-time local stabilization for a Korteweg–de Vries equation. Syst. Control Lett. 111, 64–69 (2018)

    MathSciNet  MATH  Google Scholar 

  121. Xu, G.Q., Yung, S.P., Li, L.K.: Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12, 770–785 (2006)

    MathSciNet  MATH  Google Scholar 

  122. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    MATH  Google Scholar 

  123. Zhang, B.Y.: Boundary stabilization of the Korteweg–de Vries equations. In: Desch, W., Kappel, F., Kunisch, K. (eds.) Proceedings of the International Conference on Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena, International Series of Numerical Mathematics, vol. 118. Birkhauser, Basel, pp. 371–389 (1994)

  124. Zhang, B.Y.: Exact boundary controllability of the Korteweg–de Vries equation. SIAM J. Control Optim. 37, 543–565 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the editor and the two anonymous referees for the careful reading of the original manuscript and for their valuable remarks and suggestions.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boumediène Chentouf.

Ethics declarations

Competing interests

The author declares that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chentouf, B. Qualitative Analysis of the Dynamic for the Nonlinear Korteweg–de Vries Equation with a Boundary Memory. Qual. Theory Dyn. Syst. 20, 36 (2021). https://doi.org/10.1007/s12346-021-00472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00472-y

Keywords

Navigation