Skip to main content
Log in

Families of Symmetric Exchange Orbits in the Planar \((1+2n)\)-Body Problem

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study a particular \((1+2n)\)-body problem, conformed by a massive body and 2n equal small masses, since this problem is related with Maxwell’s ring solutions, we call planet to the massive body, and satellites to the other 2n masses. Our goal is to obtain doubly-symmetric orbits in this problem. By means of studying the reversing symmetries of the equations of motion, we reduce the set of possible initial conditions that leads to such orbits, and compute the 1-parameter families of time-reversible invariant tori. The initial conditions of the orbits were determined as solutions of a boundary value problem with one free parameter, in this way we find analytically and explicitly a new involution, until we know this is a new and innovative result. The numerical solutions of the boundary value problem were obtained using pseudo arclength continuation. For the numerical analysis we have used the value of \(3.5 \times 10 ^{-4}\) as mass ratio of some satellite and the planet, and it was done for \(n=2,3,4,5,6\). We show numerically that the succession of families that we have obtained approach the Maxwell solutions as n increases, and we establish a simple proof why this should happen in the configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We have chosen this value in order to compare the results of this work with our previous studies.

References

  1. Bengochea, A., Piña, E.: The Saturn, Janus and Epimetheus dynamics as a gravitational three body problem in the plane. Rev. Mexicana Fís. 55, 97–105 (2009)

    Google Scholar 

  2. Bengochea, A., Falconi, M., Pérez-Chavela, E.: Symmetric horseshoe periodic orbits in the general planar three-body problem. Astrophys. Space Sci. 333, 399–408 (2011). https://doi.org/10.1007/s10509-011-0641-x

    Article  MATH  Google Scholar 

  3. Bengochea, A., Falconi, M., Pérez-Chavela, E.: Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete Contin. Dyn. Syst. Ser. A 33, 987–1008 (2013). https://doi.org/10.3934/dcds.2013.33.987

    Article  MathSciNet  MATH  Google Scholar 

  4. Bengochea, A., Galán, J., Pérez-Chavela, E.: Doubly-symmetric horseshoe orbits in the general planar three-body problem. Astrophys. Space Sci. 348, 403–415 (2013). https://doi.org/10.1007/s10509-013-1590-3

    Article  Google Scholar 

  5. Bengochea, A., Galán, J., Pérez-Chavela, E.: Exchange orbits in the planar \((1+4)\)-body problem. Physica D 301–302, 21–35 (2015). https://doi.org/10.1016/j.physd.2015.03.006

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruno, A.D., Varin, V.P.: Periodic solutions of the restricted three-body problem for a small mass ratio. J. Appl. Math. Mech. 71, 933–960 (2007). https://doi.org/10.1016/j.jappmathmech.2007.12.012

    Article  MathSciNet  Google Scholar 

  7. Cors, J.M., Hall, G.R.: Coorbital periodic orbits in the three body problem. SIAM J. Appl. Dyn. Syst. 2, 219–237 (2003). https://doi.org/10.1137/S1111111102411304

    Article  MathSciNet  MATH  Google Scholar 

  8. Cors, J.M., Llibre, J., Ollé, M.: Central configurations of the planar coorbital satellite problem. Celest. Mech. Dynam. Astron. 89, 319–342 (2004). https://doi.org/10.1023/B:CELE.0000043569.25307.ab

    Article  MathSciNet  MATH  Google Scholar 

  9. Cors, J.M., Palacián, J.F., Yanguas, P.: On co-orbital quasi-periodic motion in the three-body problem. SIAM J. Appl. Dyn. Syst. 18, 334–353 (2019). https://doi.org/10.1137/18M1190859

    Article  MathSciNet  MATH  Google Scholar 

  10. Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr, Numer. 30, 265–284 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Doedel, E.J., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galán-Vioque, J., Vanderbauwhede, A.: Computation of Periodic Solutions of Conservative Systems With Application to the 3-Body Problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13, 1353–1381 (2003). https://doi.org/10.1142/S0218127403007291

  12. Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits: I. Theory. Icarus 48, 1–11 (1981). https://doi.org/10.1016/0019-1035(81)90147-0

    Article  Google Scholar 

  13. Dermott, S.F., Murray, C.D.: The dynamics of tadpole and horseshoe orbits: II. The coorbital satellites of saturn. Icarus 48, 12–22 (1981). https://doi.org/10.1016/0019-1035(81)90148-2

    Article  Google Scholar 

  14. Funk, B., Dvorak, R., Schwarz, R.: Exchange orbits: an interesting case of co-orbital motion. Celest. Mech. Dynam. Astron. 117, 41–58 (2013). https://doi.org/10.1007/s10569-013-9497-4

    Article  Google Scholar 

  15. Galán, J., Muñoz-Almaraz, F. J., Freire, E., Doedel, E., Vanderbauwhede, A.: Stability and Bifurcations of the Figure-8 Solution of the Three-Body Problem. Phys. Rev. Lett. 88, 241101-241101-4 (2002) https://doi.org/10.1103/PhysRevLett.88.241101

  16. Lamb, J.S.W., Roberts, J.A.G.: Time-reversal symmetry in dynamical systems: A survey. Phys. D 112, 1–39 (1998). https://doi.org/10.1016/S0167-2789(97)00199-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Laughlin, G., Chambers, J.E.: Extrasolar trojans: the viability and detectability of planets in the 1:1 resonance. Astrophys. J. 124, 592–600 (2002). https://doi.org/10.1086/341173

    Article  Google Scholar 

  18. Llibre, J., Ollé, M.: The motion of Saturn coorbital satellites in the Restricted Three-Body Problem. Astron. Astrophys. 378, 1087–1099 (2001). https://doi.org/10.1051/0004-6361:20011274

    Article  MATH  Google Scholar 

  19. Maxwell, C.J.: On the stability of the motion of Saturn’s Rings. In: Niven, W.D. (ed.) The Scientific Papers of James Clerk Maxwell, pp. 288–376. Dover Publications, New York (1965)

    Google Scholar 

  20. Muñoz-Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and hamiltonian systems. Phys. D 181, 1–38 (2003). https://doi.org/10.1016/S0167-2789(03)00097-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Muñoz-Almaraz, F.J., Freire, E., Galán, J., Vanderbauwhede, A.: Continuation of normal doubly symmetric orbits in conservative reversible systems. Celest. Mech. Dynam. Astron. 97, 17–47 (2007). https://doi.org/10.1007/s10569-006-9048-3

    Article  MathSciNet  MATH  Google Scholar 

  22. Niederman, L., Pousse, A., Robutel, P.: On the co-orbital motion in the three-body problem: existence of quasi-periodic horseshoe-shaped orbits. Commun. Math. Phys. 377, 551–612 (2020). https://doi.org/10.1007/s00220-020-03690-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Renner, S., Sicardy, B.: Stationary configurations for co-orbital satellites with small arbitrary masses. Celest. Mech. Dynam. Astron. 88, 397–414 (2004). https://doi.org/10.1023/B:CELE.0000023420.80881.67

    Article  MathSciNet  MATH  Google Scholar 

  24. Vanderbauwhede, A.: Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete Contin. Dyn. Syst. Ser. A 33, 359–363 (2013). https://doi.org/10.3934/dcds.2013.33.359

    Article  MathSciNet  MATH  Google Scholar 

  25. Verrier, P.E., McInnes, C.: Periodic orbits for three and four co-orbital bodies. Mon. Not. R. Astron. Soc. 442, 3179–3191 (2014). https://doi.org/10.1093/mnras/stu1056

    Article  Google Scholar 

  26. Salo, H., Yoder, C. F.: Dynamics of coorbital satellite rings. In: Valtonen, M. J. (ed.) The few body problem, Astrophys. Space Sci. Libr., vol. 140, pp. 179-184, Kluwer Academic Publishers, Dordrecht (1988)

Download references

Acknowledgements

We thank to the anonymous referee for pointing out some references that we had missed, which help us in the drafting of the new manuscript. The first and third author have been partially supported from Asociación Mexicana de Cultura A.C., the National System of Researchers (SNI), and Conacyt-México Project A1S10112. The second author wishes to acknowledge financial support from the Spanish government through grants PGC2018-096265-B-I00 and PGC2018-100680-B-C21. We would like to thank Rafael Ortega for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Pérez-Chavela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengochea, A., Galán-Vioque, J. & Pérez-Chavela, E. Families of Symmetric Exchange Orbits in the Planar \((1+2n)\)-Body Problem. Qual. Theory Dyn. Syst. 20, 34 (2021). https://doi.org/10.1007/s12346-021-00473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00473-x

Keywords

Navigation