Skip to main content
Log in

The Dunkl weight function for rational Cherednik algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove the existence of the Dunkl weight function \(K_{c, \lambda }\) for any irreducible representation \(\lambda \) of any finite Coxeter group W, generalizing previous results of Dunkl. In particular, \(K_{c, \lambda }\) is a family of tempered distributions on the real reflection representation of W taking values in \(\text {End}_\mathbb {C}(\lambda )\), with holomorphic dependence on the complex multi-parameter c. When the parameter c is real, the distribution \(K_{c, \lambda }\) provides an integral formula for Cherednik’s Gaussian inner product \(\gamma _{c, \lambda }\) on the Verma module \(\Delta _c(\lambda )\) for the rational Cherednik algebra \(H_c(W, \mathfrak {h})\).queryPlease check and confirm the inserted city name ‘Stanford’ for the affiliation is correct. In this case, the restriction of \(K_{c, \lambda }\) to the hyperplane arrangement complement \(\mathfrak {h}_{\mathbb {R}, reg}\) is given by integration against an analytic function whose values can be interpreted as braid group invariant Hermitian forms on \(KZ(\Delta _c(\lambda ))\), where KZ denotes the Knizhnik–Zamolodchikov functor introduced by Ginzburg–Guay–Opdam–Rouquier. This provides a concrete connection between invariant Hermitian forms on representations of rational Cherednik algebras and invariant Hermitian forms on representations of Iwahori–Hecke algebras, and we exploit this connection to show that the KZ functor preserves signatures, and in particular unitarizability, in an appropriate sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, J., can Leeuwen, M., Trapa, P., Vogan, D.: Unitary representations of real reductive groups. Preprint, arXiv:1212.2192v5

  2. Bergbaurer, C., Brunetti, R., Kreimer, D.: Renormalization and resolution of singularities. Preprint, arXiv:0908.0633

  3. Bezrukavnikov, R., Etingof, P.: Parabolic induction and restriction functors for rational Cherednik algebras. Selecta Math. (N.S.) 14(3–4), 397–425 (2009)

    Article  MathSciNet  Google Scholar 

  4. Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups. Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Cherednik, I.: Affine Hecke algebras via DAHA, talk. www-math.mit.edu/~etingof/hadaha.pdf

  6. Chlouverkai, M., Gordon, I., Griffeth, S.: Cell modules and canonical basic sets for Hecke algebras from Cherednik algebras. Contemp. Math. New Trends Noncommutative Algebra 562, 77–89 (2012)

    Article  MathSciNet  Google Scholar 

  7. De Concini, C., Procesi, D.: Wonderful models of subspace arrangements. Selecta Math. (N.S.) 1, 459–494 (1995)

    Article  MathSciNet  Google Scholar 

  8. De Concini, C., Procesi, D.: Hyperplane arrangements and holonomy equations. Selecta Math. (N.S.) 1, 495–535 (1995)

    Article  MathSciNet  Google Scholar 

  9. Dimassi, Mouez, Sjöstrand, Johannes: Spectral Asymptotics in the Semi-Classical Limit. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  10. Dunkl, C.: Vector polynomials and a matrix weight associated to dihedral groups. SIGMA 10, 044 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Dunkl, C.: Vector-valued polynomials and a matrix weight function with \(B_2\)-action. SIGMA 9, 007 (2013)

    MATH  Google Scholar 

  12. Dunkl, C.: Vector-valued polynomials and a matrix weight function with \(B_2\)-action, II. SIGMA 9, 043 (2013)

    MATH  Google Scholar 

  13. Dunkl, C.: Orthogonality measure on the torus for vector-valued Jack polynomials. SIGMA 12, 033 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Dunkl, C.: A linear system of differential equations related to vector-valued Jack polynomials on the torus. SIGMA 13, 040 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Dunkl, C.: Vector-valued Jack polynomials and wavefunctions on the torus. J. Phys. A: Math. Theor. 50, 245201 (2017)

    Article  MathSciNet  Google Scholar 

  16. Etingof, P.: Calogero-Moser systems and representation theory. Zurich Lectures in Advanced Mathematics (2007)

  17. Etingof, P.: Supports of irreducible spherical representations of rational Cherednik algebras. Adv. Math. 229(3), 2042–2054 (2012)

    Article  MathSciNet  Google Scholar 

  18. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero–Moser space, and deformed Harish–Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MathSciNet  Google Scholar 

  19. Etingof, P., Gorsky, E., Losev, I.: Representations of Cherednik algebras with minimal support and torus knots. Adv. Math. 227, 124–180 (2015)

    Article  MathSciNet  Google Scholar 

  20. Etingof, P., Ma, X.: Lecture notes on rational Cherednik algebras. arXiv:1001.0432

  21. Etingof, P., Stoica, E.: With an appendix by S. Griffeth Unitary representations of rational Cherednik algebras. Represent Theory 13, 349–370 (2009)

    Article  MathSciNet  Google Scholar 

  22. Feigin, M.: Generalized Calogero–Moser systems from rational Cherednik algebras. Selecta Math. (N.S.) 18(N1), 253–281 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On the category \(\cal{O}\) for rational Cherednik algebras. Invent. Math. 154, 617–651 (2003)

    Article  MathSciNet  Google Scholar 

  24. Gordon, I., Stafford, J.T.: Rational Cherednik algebras and Hilbert schemes. Adv. Math. 198(1), 224–274 (2005)

    Article  MathSciNet  Google Scholar 

  25. Gordon, I., Stafford, J.T.: Rational Cherednik algebras and Hilbert schemes. II. Representations and sheaves. Duke Math. J. 132(1), 73–135 (2006)

    Article  MathSciNet  Google Scholar 

  26. Gorsky, E., Oblomkov, A., Rasmussen, J., Shende, V.: Torus knots and the rational DAHA. Duke Math. J. 163(14), 2709–2794 (2014)

    Article  MathSciNet  Google Scholar 

  27. Griffeth, S.: Unitary representations of cyclotomic rational Cherednik algebras. Preprint. arXiv:1106.5084

  28. Humphreys, J.E.: Reflection Groups and Coxeter Groups Cambridge Studies in Advanced Mathematics, vol. 29. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  29. Ilyashenko, Y., Yakovenko, S.: Lectures on Analytic Differential Equations. Graduate Studies in Mathematics, vol. 87, Amer. Math. Soc., Providence, RI, (2008)

  30. Jantzen, J.C.: Modulen mit einem höchsten Gewich. Lect. Notes in Math. 750, Springer: Berlin-Heidelberg-New York (1979)

  31. Losev, I., Shelley-Abrahamson, S.: On refined filtration by supports for rational Cherednik categories \(\cal{O}\). Selecta Math. (N.S.) (2018)

  32. Royden, H.L., Fitzpatrick, P.M.: Real Analysis, 4th edn. Prentice Hall, Boston (2010)

    MATH  Google Scholar 

  33. Shan, P.: Crystals of Fock spaces and cyclotomic double affine Hecke algebras. Ann. Sci. Ecole Norm. Sup. 44, 147–182 (2011)

    Article  MathSciNet  Google Scholar 

  34. Shan, P., Vasserot, E.: Heisenberg algebras and rational double affine Hecke algebras. J. Am. Math. Soc. 25, 959–1031 (2012)

    Article  MathSciNet  Google Scholar 

  35. Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274–304 (1954)

    Article  MathSciNet  Google Scholar 

  36. Venkateswaran, V.: Signatures of representations of Hecke algebras and rational Cherednik algebras. Preprint, arXiv:1409.6663v3

  37. Vogan, D.: Unitarizability of certain series of representations. Ann. Math. 120, 141–187 (1984)

    Article  MathSciNet  Google Scholar 

  38. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Krieger, Huntington, N.Y. (1976) (orig. Wiley, 1965)

  39. Yee, W.L.: Signatures of invariant Hermitian forms on irreducible highest-weight modules. Duke Math. J. 142(1), 165–196 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

    Book  Google Scholar 

Download references

Acknowledgements

This paper arose from a project which was developed by Pavel Etingof and benefited from his conversations with Larry Guth, Richard Melrose, Leonid Polterovich, and Vivek Shende. I would like to express my deep gratitude to Pavel Etingof for suggesting this project, for many useful conversations, and for his countless ideas and insights that permeate this paper and led to the conjectures appearing in Sect. 6. I would also like to thank Semyon Dyatlov for providing essentially all of the content of Sects. 5.1 and 5.2, notably including the crucial Lemma 5.2.2 and its proof, and for explaining to me the techniques from semiclassical analysis used in those sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth Shelley-Abrahamson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelley-Abrahamson, S. The Dunkl weight function for rational Cherednik algebras. Sel. Math. New Ser. 26, 8 (2020). https://doi.org/10.1007/s00029-019-0533-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0533-4

Mathematics Subject Classification

Navigation