Skip to main content
Log in

Stable conjugacy and epipelagic L-packets for Brylinski–Deligne covers of \({\text {Sp}}(2n)\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

A Correction to this article was published on 19 May 2021

This article has been updated

Abstract

Let F be a local field of characteristic not 2. We propose a definition of stable conjugacy for all the covering groups of \(\text {Sp}(2n,F)\) constructed by Brylinski and Deligne, whose degree we denote by m. To support this notion, we follow Kaletha’s approach to construct genuine epipelagic L-packets for such covers in the non-archimedean case with \(p \not \mid 2m\), or some weaker variant when \(4 \mid m\); we also prove the stability of packets when \(F \supset \mathbb {Q}_p\) with p large. When \(m=2\), the stable conjugacy reduces to that defined by J. Adams, and the epipelagic L-packets coincide with those obtained by \(\Theta \)-correspondence. This fits within Weissman’s formalism of L-groups. For \(n=1\) and m even, it is also compatible with the transfer factors proposed by K. Hiraga and T. Ikeda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

Change history

References

  1. user28172 (http://mathoverflow.net/users/28172/user28172). How fine one must choose an affine cover to get weil restriction? MathOverflow. http://mathoverflow.net/q/113891 (version: 2012-11-20). eprint: http://mathoverflow.net/q/113891

  2. Adams, J.: Lifting of characters on orthogonal and metaplectic groups. Duke Math. J. 92(1), 129–178 (1998)

    Article  MathSciNet  Google Scholar 

  3. Adams, J., Barbasch, D.: Genuine representations of the metaplectic group. Compos. Math. 113(1), 23–66 (1998). https://doi.org/10.1023/A:1000450504919

    Article  MathSciNet  Google Scholar 

  4. Adler, J.D.: Refined anisotropic \(K\)-types and supercuspidal representations. Pac. J. Math. 185(1), 1–32 (1998). https://doi.org/10.2140/pjm.1998.185.1

    Article  MathSciNet  MATH  Google Scholar 

  5. Adler, J.D., Spice, Loren: Supercuspidal characters of reductive \(p\)-adic groups. Am. J. Math. 131(4), 1137–1210 (2009). https://doi.org/10.1353/ajm.0.0060

    Article  MathSciNet  MATH  Google Scholar 

  6. Arthur, J.: An introduction to the trace formula. In: Harmonic Analysis, The Trace Formula, and Shimura Varieties, vol. 4. Clay Mathematics Proceedings, pp. 1–263. American Mathematical Society, Providence, RI (2005)

  7. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models, vol. 21. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin, pp. x+325. ISBN: 3-540-50587-3 (1990). https://doi.org/10.1007/978-3-642-51438-8

    Book  Google Scholar 

  8. Brylinski, J.-L., Deligne, P.: Central extensions of reductive groups by \(\text{ K }_{2}\). Publ. Math. Inst. Hautes Études Sci. 94, 5–85 (2001). https://doi.org/10.1007/s10240-001-8192-2

    Article  MATH  Google Scholar 

  9. Bushnell, C.J., Henniart, G.: The local Langlands conjecture for GL(2), vol. 335. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, pp. xii+347. ISBN: 978-3-540-31486-8; 3-540-31486-5 (2006). https://doi.org/10.1007/3-540-31511-X

    Book  Google Scholar 

  10. Conrad, B., Gabber, O., Prasad, G.: Pseudo-reductive groups. Second, vol. 26. New Mathematical Monographs. Cambridge University Press, Cambridge, pp. xxiv+665. ISBN: 978-1-107-08723-1 (2015). https://doi.org/10.1017/CBO9781316092439

  11. DeBacker, S., Reeder, M.: Depth-zero supercuspidal \(L\)-packets and their stability. Ann. Math. (2) 169(3), 795–901 (2009). https://doi.org/10.4007/annals.2009.169.795

    Article  MathSciNet  MATH  Google Scholar 

  12. Deligne, P.: Extensions centrales de groupes algébriques simplement connexes et cohomologie galoisienne. In: Inst. Hautes Études Sci. Publ. Math. 84(1996), 35–89 (1997). http://www.numdam.org/item?id=PMIHES_1996__84__35_0

    Article  Google Scholar 

  13. Deligne, P.: Le support du caractère d’une représentation supercuspidale. C. R. Acad. Sci. Paris Sér. A-B 283.4, Aii, A155–A157 (1976)

  14. Flicker, Y.Z.: Automorphic forms on covering groups of GL(2). Invent. Math. 57(2), 119–182 (1980). https://doi.org/10.1007/BF01390092. ISSN: 0020-9910

    Article  MathSciNet  MATH  Google Scholar 

  15. Gan, W.T., Gao, F.: The Langlands–Weissman program for Brylinski–Deligne extensions. In: Astérisque 398. L-Groups and the Langlands Program for Covering Groups, pp. 187–275 (2018)

  16. Gan, W.T., Savin, G.: Representations of metaplectic groups I: Epsilon dichotomy and local Langlands correspondence. Compos. Math. 148(6), 1655–1694 (2012). https://doi.org/10.1112/S0010437X12000486

    Article  MathSciNet  MATH  Google Scholar 

  17. Gille, P., Polo, P. (eds.): Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 7. Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre, Revised and annotated edition of the 1970 French original. Société Mathématique de France, Paris, pp. xxviii+610 (2011) ISBN: 978-2-85629-323-2

  18. Gille, P., Polo, P. (eds.): Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 8. Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre, Revised and annotated edition of the 1970 French original. Société Mathématique de France, Paris, pp. lvi+337 (2011) ISBN: 978- 2-85629-324-9

  19. Groupes de monodromie en géométrie algébrique. I. Lecture Notes in Mathematics, vol. 288. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. Springer, Berlin, pp. viii+523 (1972)

  20. Hakim, J., Murnaghan, F.: Distinguished Tame Supercuspidal Representations. In: International Mathematics Research Notices IMRP 2, Art. ID rpn005, 166 (2008)

  21. Harish-Chandra: Admissible Invariant Distributions on Reductive p-Adic Groups, vol. 16. University Lecture Series. Preface and notes by Stephen DeBacker and Paul J. Sally, Jr., pp. xiv+97. American Mathematical Society, Providence, RI (1999) ISBN: 0-8218-2025-7

  22. Ikeda, T., Hiraga, K.: Stabilization of the trace formula for the covering group of SL2 and its application to the theory of Kohnen plus spaces. Slides for PANT (2011)

  23. Jacquet, H., Langlands, R.P.: Automorphic Forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

    Book  Google Scholar 

  24. Kaletha, T.: Epipelagic L-packets and rectifying characters. Invent. Math. 202(1), 1–89 (2015). https://doi.org/10.1007/s00222-014-0566-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaletha, T.: Regular supercuspidal representations. J. Am. Math. Soc. 32(4), 1071–1170 (2019). https://doi.org/10.1090/jams/925

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaletha, T.: Simple wild \(L\)-packets. J. Inst. Math. Jussieu 12(1), 43–75 (2013). https://doi.org/10.1017/S1474748012000631

    Article  MathSciNet  MATH  Google Scholar 

  27. Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Inst. Hautes Études Sci. Publ. Math. 59, 35–142 (1984). http://www.numdam.org/item?id=PMIHES_1984_ _59__35_0

  28. Kottwitz, R.E.: Stable trace formula: elliptic singular terms. Math. Ann. 275(3), 365–399 (1986)

    Article  MathSciNet  Google Scholar 

  29. Kubota, T.: On Automorphic Functions and the Reciprocity Law in a Number Field. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2. Kinokuniya Book-Store Co., Ltd., Tokyo, pp. iii+65 (1969)

  30. Labesse, J.-P., Langlands, R.P.: \(L\)-indistinguishability for SL(2). Can. J. Math. 31(4), 726–785 (1979). https://doi.org/10.4153/CJM-1979-070-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Langlands, R.P., Shelstad, D.: On the definition of transfer factors. Math. Ann. 278(1–4), 219–271 (1987)

    Article  MathSciNet  Google Scholar 

  32. Leslie, S.: A generalized theta lifting, CAP representations, and Arthur parameters. Trans. Am. Math. Soc. 372(7), 5069–5121 (2019). https://doi.org/10.1090/tran/7863

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, W.-W.: La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale. Ann. Sci. Éc. Norm. Supér. (4) 45.5(2012), 787–859 (2013)

    MATH  Google Scholar 

  34. Li, W.-W.: Transfert d’intégrales orbitales pour le groupe métaplectique. Compos. Math. 147(2), 524–590 (2011). https://doi.org/10.1112/S0010437X10004963

    Article  MathSciNet  MATH  Google Scholar 

  35. Loke, H.Y., Ma, J.-J.: Local theta correspondences between supercuspidal representations. Ann. Sci. Éc. Norm. Supér. (4) 51(4), 927–991 (2018). https://doi.org/10.24033/asens.2369

    Article  MathSciNet  MATH  Google Scholar 

  36. Loke, H.Y., Ma, J.-J., Savin, G.: Local theta correspondences between epipelagic supercuspidal representations. Math. Z. 283(1–2), 169–196 (2016). https://doi.org/10.1007/s00209-015-1594-5

    Article  MathSciNet  MATH  Google Scholar 

  37. Matsumoto, H.: Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4) 2, 1–62 (1969)

    Article  MathSciNet  Google Scholar 

  38. Milne, J.: The (failure of the) Hasse principle for centres of semisimple groups. http://www.jmilne.org/math/articles/1987T.pdf

  39. Moeglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps p-adique. Lecture Notes in Mathematics, vol. 1291, pp. viii+163. Springer, Berlin (1987) ISBN: 3-540-18699-9

  40. Moy, A., Prasad, G.: Jacquet functors and unrefined minimal \(K\)-types. Comment. Math. Helv. 71(1), 98–121 (1996). https://doi.org/10.1007/BF02566411

    Article  MathSciNet  MATH  Google Scholar 

  41. Moy, A., Prasad, G.: Unrefined minimal \(K\)-types for p-adic groups. Invent. Math. 116(1–3), 393–408 (1994). https://doi.org/10.1007/BF01231566

    Article  MathSciNet  MATH  Google Scholar 

  42. Perrin, P.: Représentations de Schrödinger, indice de Maslov et groupe metaplectique. In: Noncommutative Harmonic Analysis and Lie Groups (Marseille, 1980), vol. 880. Lecture Notes in Mathematics, pp. 370–407. Springer, Berlin (1981)

    Google Scholar 

  43. Prasad, G.: Galois-fixed points in the Bruhat–Tits building of a reductive group. Bull. Soc. Math. Fr. 129(2), 169–174 (2001)

    Article  MathSciNet  Google Scholar 

  44. Raghunathan, M.S.: Tori in quasi-split-groups. J. Ramanujan Math. Soc. 19(4), 281–287 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Reeder, M., Yu, J.-K.: Epipelagic representations and invariant theory. J. Am. Math. Soc. 27(2), 437–477 (2014). https://doi.org/10.1090/S0894-0347-2013-00780-8

    Article  MathSciNet  MATH  Google Scholar 

  46. Scharlau, W.: Quadratic and Hermitian Forms, vol. 270. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin, pp. x+421. ISBN: 3-540-13724-6 (1985) https://doi.org/10.1007/978-3-642-69971-9

    Book  Google Scholar 

  47. Springer, T.A.: Regular elements of finite reflection groups. Invent. Math. 25, 159–198 (1974)

    Article  MathSciNet  Google Scholar 

  48. Springer, T.A., Steinberg, R.: Conjugacy classes. In: Steinberg, R., Iwahori, N., Borel, A., Springer, T.A., Curtis, C.W., Carter, R. (eds.) Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, NJ, 1968/69). Lecture Notes in Mathematics, vol. 131, pp. 167–266. Springer, Berlin (1970)

    Chapter  Google Scholar 

  49. Suslin, A.A.: Algebraic K-theory and the norm-residue homomorphism. J. Sov. Math. 30(6), 2556–2611 (1985). https://doi.org/10.1007/BF02249123

    Article  MATH  Google Scholar 

  50. Thomas, T.: The Maslov index as a quadratic space. Math. Res. Lett. 13(5–6), 985–999 (2006). arXiv:math/0505561v3

    Article  MathSciNet  Google Scholar 

  51. Waldspurger, J.-L.: Le lemme fondamental implique le transfert. Compos. Math. 105(2), 153–236 (1997). https://doi.org/10.1023/A:1000103112268

    Article  MathSciNet  MATH  Google Scholar 

  52. Waldspurger, J.-L.: Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés. Astérisque 269, pp. vi+449 (2001)

  53. Waldspurger, J.-L.: L’endoscopie tordue n’est pas si tordue. In: Memoirs of the American Mathematical Society, 194.908, pp. x+261 (2008)

  54. Weibel, C.A.: The K-book, vol. 145. Graduate Studies in Mathematics. An Introduction to Algebraic \(K\)-Theory, pp. xii+618. American Mathematical Society, Providence, RI (2013) ISBN: 978-0-8218-9132-2

  55. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964). ISSN: 0001-5962

    Article  MathSciNet  Google Scholar 

  56. Weissman, M.H.: A comparison of L-groups for covers of split reductive groups. In: 398. L-Groups and the Langlands Program for Covering Groups, pp. 277–286 (2018) ISBN: 978-2-85629-845-9

  57. Weissman, M.H.: Covering groups and their integral models. Trans. Am. Math. Soc. 368(5), 3695–3725 (2016). https://doi.org/10.1090/tran/6598

    Article  MathSciNet  MATH  Google Scholar 

  58. Weissman, M.H.: L-groups and parameters for covering groups. In: 398. L-Groups and the Langlands Program for Covering Groups. pp. 33–186 (2018) ISBN: 978-2-85629-845-9

  59. Weissman, M.H.: Metaplectic tori over local fields. Pac. J. Math. 241(1), 169–200 (2009). https://doi.org/10.2140/pjm.2009.241.169

    Article  MathSciNet  MATH  Google Scholar 

  60. Yu, J.-K.: Construction of tame supercuspidal representations. J. Am. Math. Soc. 14(3), 579–622 (2001). https://doi.org/10.1090/S0894-0347-01-00363-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Wee Teck Gan, Hung Yean Loke, Jiajun Ma and Gopal Prasad for helpful answers. He would also like to express his appreciation to the anonymous referee(s) for meticulous reading and suggestions. This work is supported by NSFC-11922101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Index

Index

\((K, K^\sharp , x, c)\)

\((\mathcal {E}, S, \theta ^\flat )\)

\(\Omega (G,T)\)

\(\Pi (S, \theta ^\flat )\)

\(\Pi _\phi , \Pi _{[\phi ]}\)

\(\chi \)-data

\(\iota _{Q,m}\)

\(\kappa _-\)

\(\overline{-1}, \widetilde{-1}\)

\(\psi _c\)

\(\theta ^\circ _j, \theta ^\dagger _j\)

\(\theta ^\flat \)

\(\{x,y\}_F\)

[xy]

\(B_Q\)

\(\mathbb {B}\)

\(\mathcal {B}(G, F)\)

\(\mathbf{C} \text {Ad}\)

central character

\(\mathsf {CExt}(G,A)\)

\(\mathbf{C} _m(\nu , \gamma _0)\)

contracted product

\(\mathcal {D}\)

\(d^\pm (V,q)\)

\(\mathcal {D}_{Q,m}, \mathcal {D}_{Q,m}^{\mathrm{sc}}\)

epipelagic genuine character

\(\epsilon \)

\(\epsilon (V,q)\)

\(\epsilon _S\)

\(F_{\alpha }, F_{\pm \alpha }\)

\(f_{(G,S)}(\alpha )\)

factorization pair

\(G(F)_x, G(F)_{x,r}\)

\(\mathfrak {g}(F)_{x,r}\)

\(\mathfrak {g}^*(F)_{x,r}\)

\({}^{{\mathrm{L}}} G\)

good element

\(\overline{G}_\psi , \overline{G}_\psi ^{(2)}, \overline{G}_\psi ^{(8)}\)

\(G^T\)

\(\tilde{G}^\vee \)

inertially anisotropic

\(\text {inv}(\cdot , \cdot )\)

L-parameter

      epipelagic

      toral supercuspidal

Matsumoto’s central extension

moment map

\(\mu _m, \varvec{\mu }_m\)

\(N_F\)

\(\nabla \)

\(q\langle Y \rangle \)

\(R_{B/A}\)

representation

      epipelagic supercuspidal

      genuine

\(\text {Sgn}_m(T)\)

\(\sigma _\ell , \sigma _{\text {LP}}\)

stable conjugacy

stable distribution

stable system

\(S\Theta _\phi , S\Theta _{[\phi ]}\)

symmetric root

\(T_{Q,m}\)

\(\tau _{Q,m}\)

topological Jordan decomposition

\(\tilde{T}_{Q,m}, \tilde{T}_{Q,m}^\sigma \)

transfer factor

type (ER)

\(\mathcal {W}_F\)

Weil restriction

\(X_{Q,m}\)

\(\varvec{x}(\cdot ), \varvec{s}, \varvec{c}\)

\(Y_0\)

\(Y_{Q,m}\)

\(Y_{Q,m}^{\mathrm{sc}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WW. Stable conjugacy and epipelagic L-packets for Brylinski–Deligne covers of \({\text {Sp}}(2n)\). Sel. Math. New Ser. 26, 12 (2020). https://doi.org/10.1007/s00029-020-0537-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-020-0537-0

Keywords

Mathematics Subject Classification

Navigation