Skip to main content
Log in

On the Lefschetz Zeta Function for a Class of Toral Maps

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In the present article we study the periodic structure of a class of maps on the n-dimensional torus such that the eigenvalues of the induced map on the first homology are dilations of roots of unity. This family of maps shares some properties with the family of the quasi-unipotent maps. We compute their Lefschetz numbers, and show that the Lefschetz numbers of period m are non-zero, for all m’s, in the case that n is an odd prime. Moreover we give an explicit expression for their corresponding Lefschetz zeta functions. We conjecture that in any dimension the Lefschetz numbers of period m are non-zero, for all m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976)

    Book  Google Scholar 

  2. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81, 82–99 (1965)

    Article  MathSciNet  Google Scholar 

  3. Baake, M., Hermisson, J., Pleasants, P.A.B.: The torus parametrization of quasiperiodic LI-classes. J. Phys. A Math. Gen. 30, 3029–3056 (1997)

    Article  MathSciNet  Google Scholar 

  4. Baake, M., Lau, E., Paskunas, V.: A note on the dynamical zeta function of general toral automorphisms. Monatsh. Math. 161, 33–42 (2010)

    Article  MathSciNet  Google Scholar 

  5. Babenko, I.K., Bogatyi, S.A.: The behaviour of the index of periodic points under iterations of a mapping. Math. USSR Izv. 38, 1–26 (1992)

    Article  MathSciNet  Google Scholar 

  6. Banchoff, T., Rosen, M.I.: Periodic points of Anosov diffeomorphisms. 1970 Global Analysis Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., pp. 17–21. Amer. Math. Soc., Providence, RI (1968)

  7. Berrizbeitia, P., Sirvent, V.F.: On the Lefschetz zeta function for quasi-unipotent maps on the \(n\)-dimensional torus. J. Differ. Equ. Appl. 20, 961–972 (2014)

    Article  MathSciNet  Google Scholar 

  8. Berrizbeitia, P., González, M.J., Mendoza, A., Sirvent, V.F.: On the Lefschetz zeta function for quasi-unipotent maps on the\(n\)-dimensional torus II: the general case. Topol. Appl. 210, 246–262 (2016)

    Article  MathSciNet  Google Scholar 

  9. Berrizbeitia, P., González, M.J., Sirvent, V.F.: On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of \(\ell \)-spheres. Topol. Appl. 235, 428–444 (2018)

    Article  MathSciNet  Google Scholar 

  10. Byszewski, J., Graff, G., Ward, T.: Dold sequences, periodic points, and dynamics. arXiv:2007.04031

  11. Dold, A.: Fixed point indices of iterated maps. Invent. math. 74, 419–435 (1983)

    Article  MathSciNet  Google Scholar 

  12. Dos Santos, N.M., Urzúa, R.: Minimal homeomorphisms on low-dimensional tori. Ergod. Theory. Dyn. Syst. 29, 1515–1528 (2009)

    Article  MathSciNet  Google Scholar 

  13. Duan, H.: The Lefschetz numbers of iterated maps. Topol. Appl. 67, 71–79 (1995)

    Article  MathSciNet  Google Scholar 

  14. Franks, J.: Period doubling and the Lefschetz formula. Trans. Am. Math. Soc. 287, 275–283 (1985)

    Article  MathSciNet  Google Scholar 

  15. Graff, G.: Minimal periods of maps of rational exterior spaces. Fund. Math. 163, 99–115 (2000)

    Article  MathSciNet  Google Scholar 

  16. Graff, G., Lebiedź, M., Myszkowski, A.: Periodic expansion in determining minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms. J. Fixed Point Theory Appl. 21(47), 21 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Graff, G., Lebieź, M., Nowak-Przygodzki, P.: Generating sequences of Lefschetz numbers of iterates. Monatsh. Math. 188, 511–525 (2019)

    Article  MathSciNet  Google Scholar 

  18. Guillamón, A., Jarque, X., Llibre, J., Ortega, J., Torregrosa, J.: Periods for transversal maps via Lefschetz numbers for periodic points. Trans. Math. Soc. 347, 4779–4806 (1995)

    Article  MathSciNet  Google Scholar 

  19. Guirao, J.L.G., Llibre, J.: Periods of Morse-Smale diffeomorphisms of \({\mathbb{S}}^2\). Colloq. Math. 1(10), 477–483 (2008)

    Article  Google Scholar 

  20. Guirao, J.L.G., Llibre, J.: Minimal Lefschetz sets of periods for Morse-Smale diffeomorphisms on the \(n\)-dimensional torus. J. Differ. Equ. Appl. 16, 689–703 (2010)

    Article  MathSciNet  Google Scholar 

  21. Guirao, J.L.G., Llibre, J.: The set of periods for the Morse-Smale diffeomorphisms on \({\mathbb{T}}^2\). Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 19, 471–484 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Guirao, J.L.G., Llibre, J.: On the set of periods for the Morse-Smale diffeomorphisms on the disc with \(N\)-holes. J. Differ. Equ. Appl. 19, 1161–1173 (2013)

    Article  MathSciNet  Google Scholar 

  23. Jezierski, J., Marzantowicz, W.: Homotopy Methods in Topological Fixed and Periodic Points Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  24. Lang, S.: Algebra, Third Edition, Graduate Texts in Mathematics 211. Springer, Berlin (2005)

  25. Lefschetz, S.: Intersections and transformations of complexes and manifolds. Trans. Am. Math. Soc. 28, 1–49 (1926)

    Article  MathSciNet  Google Scholar 

  26. Llibre, J.: Lefschetz numbers for periodic points. Contemp. Math. 152, 215–227 (1993)

    Article  MathSciNet  Google Scholar 

  27. Llibre, J., Sirvent, V.F.: Minimal sets of periods for Morse-Smale diffeomorphisms on orientable compact surfaces. Houst. J. Math. 35, 835–855 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Llibre, J., Sirvent, V.F.: A survey on the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on some closed manifolds. Publicaciones Matemáticas del Uruguay 14, 155–169 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Metropolis, N., Rota, G.: Witt vectors and the algebra of necklaces. Adv. Math. 50(2), 95–125 (1983)

    Article  MathSciNet  Google Scholar 

  30. Rotman, J.J.: An Introduction to Algebraic Topology. GTM, Springer, Berlin (1993)

  31. Shub, M., Sullivan, D.: Homology theory and dynamical systems. Topology 14, 109–132 (1975)

    Article  MathSciNet  Google Scholar 

  32. Sirvent, V.F.: A note on the periodic structure of transversal maps on the torus and the product of spheres. Qual. Theory Dyn. Syst. 19, 45 (2020)

    Article  MathSciNet  Google Scholar 

  33. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73(6), 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  34. Vick, J.W.: Homology Theory. An Introduction to Algebraic Topology. Springer, New York (1994)

    MATH  Google Scholar 

  35. Walters, P.: An Introduction to Ergodic Theory. Springer, New York (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor F. Sirvent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrizbeitia, P., González, M.J. & Sirvent, V.F. On the Lefschetz Zeta Function for a Class of Toral Maps. Qual. Theory Dyn. Syst. 20, 17 (2021). https://doi.org/10.1007/s12346-021-00453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00453-1

Keywords

Mathematics Subject Classification

Navigation