Skip to main content
Log in

Dynamical Behavior of Traveling Wave Solutions for a (2+1)-Dimensional Bogoyavlenskii Coupled System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we applied some computational tools, namely the modified extended tanh method via a Riccati equation, the general Exp\(_{a}\)-function method and the bifurcation methods to study a nonlinear (2+1)-dimensional Bogoyavlenskii coupled system in thin-film ferroelectric medium to construct exact traveling wave solutions. By applying a classical wave transformation we obtained an ordinary differential equations. As a result, some new traveling wave solutions are obtained including hyperbolic, trigonometric, exponential functions and rational forms. If the parameters take specific values, then the periodic wave, solitary waves, kink and anti-kink wave solutions are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special cases of these nonlinear equations by the help of programming language Maple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  2. Biswas, A., et al.: Optical soliton perturbation in non-Kerr law media: traveling wave solution. Opt. Laser Tech. 44, 263–268 (2012)

    Article  Google Scholar 

  3. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers (English Summary). Birkhäuser Boston Inc, Boston, MA (1997)

    Book  Google Scholar 

  4. Topkara, E., Milovic, D., Sarma, A.K., Zerrad, E., Biswas, A.: Optical solitons with non-Kerr law nonlinearity and inter-modal dispersion with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 15, 2320–2330 (2010)

    Article  MathSciNet  Google Scholar 

  5. Kwak, Y., Choi, U.J., Bae, S.H.: An algebraic geometric method to calculate branches near a bifurcation point. Comput. Math. Appl. 19, 87–90 (1990)

    Article  MathSciNet  Google Scholar 

  6. Murawski, K.: On Lax’s formula and inverse scattering method for the fifth-order Korteweg-de Vries equation. Ann. Phys. 44, 625–626 (1987)

    Article  MathSciNet  Google Scholar 

  7. Vakhnenko, V.O., Parkes, E.J.: The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method. Chaos Solitons Fract. 45, 846–852 (2012)

    Article  MathSciNet  Google Scholar 

  8. Zhang, Y., Chang, X., Hu, J., Hu, X., Tam, H.: Integrable discretization of soliton equations via bilinear method and Bácklund transformation. Sci. China Math. 58, 279–296 (2015)

    Article  MathSciNet  Google Scholar 

  9. Xing, L., Tao, G., Cheng, Z., Hong-Wi, Z., Xiang-Hua, M., BO, T.: Muliti-soliton solutions and their interactions for the (2+1)-dimensional Sawada-Kotera model with truncated painlevé expansion, Hirota bilinear method and symbolic computation. Inter. J Modern Phys. B 23, 5003–5015 (2009)

    Article  Google Scholar 

  10. Belgacem, F.B.M., Karaballi, A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. 91083, 23 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Kumar, H., Chand, F.: Optical solitary wave solutions for the higher order nonlinear Schrodinger equation with self-steepening and self-frequency shift effects. Opt. Laser Technol. 54, 265–273 (2013)

    Article  Google Scholar 

  12. Chow, K.W.: A class of exact, periodic solutions of nonlinear envelope equations. J. Math. Phys. 36(8), 4125–4137 (1995)

    Article  MathSciNet  Google Scholar 

  13. Peng, Y., Shen, M.: On exact solutions of the Bogoyavlenskii equation. Pramana J. Phys. 67, 449–456 (2006)

    Article  Google Scholar 

  14. Zahran, Emad, H.M., Mostafa, M.A.: Khater: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation”. Appl. Math. Model. 40(3), 1769–1775 (2016)

  15. Wazwaz, A.-M.: Multiple soliton solutions for the Bogoyavlenskii’s generalized breaking soliton equations and its extension form. Appl. Math. Comput. 217(8), 4282–8 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Bogoyavlenskii, O.I.: Overturning solitons in two-dimensional integrable equations. (Russian) Usp. Mat. Nauk, Transl Russian Math. Sur. 45, 1–86 (1990)

  17. Kudryashov, N., Pickering, A.: Rational solutions for Schwarzian integrable hierarchies. J. Phys. A 31, 9505–9518 (1998)

    Article  MathSciNet  Google Scholar 

  18. Clarkson, P.A., Gordoa, P.R., Pickering, A.: Multicomponent equations associated to non-isospectral scattering problems. Inverse Prob. 13, 1463–1476 (1997)

    Article  MathSciNet  Google Scholar 

  19. Estevéz, P.G., Prada, J.: A generalization of the sine-Gordon equation (2+1)-dimensions. J Nonlinear Math. Phys. 11, 164–179 (2004)

    Article  MathSciNet  Google Scholar 

  20. Somayeh, M.A., Maliheh, N.: Soliton Solutions for (2+1)-dimensional Breaking Soliton Equation: Three Wave Method. Int. J. Appl. Math. Resear. 1(2), 141–149 (2012)

    Google Scholar 

  21. Xin, X.-P., Liu, X.-Q., Zhang, L.-L.: Explicit solutions of the Bogoyavlensky-Konoplechenko equation. Appl. Math. Comput. 215, 3669–3673 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Prabhakar, M.V., Bhate, H.: Exact Solutions of the Bogoyavlensky-Konoplechenko Equation. Lett. Math. Phys. 64(1), 1–6 (2003)

    Article  MathSciNet  Google Scholar 

  23. Bogoyavlenskii, O.I.: Overturning solitons in new two-dimensional integrable equations. Math Izv. 34(2), 245–259 (1990)

    Article  MathSciNet  Google Scholar 

  24. Bogoyavlenskii, O.I.: Breaking solitons in (2+1)-dimensional integrable equations. Russ. Math. Surv. 45, 1–86 (1990)

    Article  Google Scholar 

  25. Cordero, R., Mota, R.D.: Soliton stability in a generalized sine-Gordon potential. Int. J. Theor. Phys. 43, 2215–2222 (2004)

    Article  MathSciNet  Google Scholar 

  26. Vitanov, N.K.: On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems. J. Phys. A 29, 5195–5207 (1996)

    Article  MathSciNet  Google Scholar 

  27. Malik, A., Chand, F., Kumar, H., Mishra, S.C.: Exact solutions of the Bogoyavlenskii equation using the multiple \((\frac{G^\prime }{G})-\) expansion method. Comput. Math. Appl. 64(9), 2850–2859 (2012)

    Article  MathSciNet  Google Scholar 

  28. Peng, Y.-Z., Shen, M.: On exact solutions of the Bogoyavlenskii equation. PRAMANA 67(3), 449–456 (2006)

    Article  MathSciNet  Google Scholar 

  29. Parkes, E.J., Duffy, B.R.: An Automated Tanh-Function Method for Finding Solitary Wave Solutions to NonLinear Evolution Equations. Comput. Phys. Commun. 98(3), 288–300 (1996)

    Article  Google Scholar 

  30. Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method and its applications to nonlinear equations. Appl. Math. Comput. 161(2), 403–412 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Engui, Fan: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4–5), 212–218 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Kamruzzaman, K., Akbar, M.A.: Traveling Wave Solutions of Some Coupled Nonlinear Evolution Equations. Math. Phys. 685736, 8 (2013)

    MATH  Google Scholar 

  33. Zayed, E.M.E., Alurrfi, K.A.E.: The modified extended tanh-function method and its applications to the generalized KdV-mKdV equation with any-order nonlinear terms. Inter. J. Environ. Eng. Sci. Tech. Res. 1(8), 165–170 (2013)

    Google Scholar 

  34. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Ali, A.T., Hassan, E.R.: General Exp\(_{a}-\)function method for nonlinear evolution equations. Appl. Math. Comput. 217, 451–459 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Zayed, E.M.E., Al-Nowehy, A.-G.: Solitons and other exact solutions for variant nonlinear Boussinesq equations. Optik 139, 166–177 (2017)

    Article  Google Scholar 

  37. Stakhov, A., Rozin, B.: On a new class of hyperbolic functions. Chaos Solitons Fract. 23, 379–389 (2005)

    Article  MathSciNet  Google Scholar 

  38. Li, J.B.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science Press, Beijing (2013)

    Google Scholar 

  39. Leta, T.D., Li, J.: Dynamical behavior of traveling wave solutions of a long waves-short waves resonance model. Qual. Theory Dyn. Syst. 18, 741–760 (2019)

    Article  MathSciNet  Google Scholar 

  40. Leta, T.D., Li, J.: Dynamical behavior and exact solution in invariant manifold for a septic derivative nonlinear Schrödinger equation. Nonlinear Dyn. 89, 509–529 (2017)

    Article  Google Scholar 

  41. Byrd, P.F., Fridman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1971)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Bekir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by Talented Young Scientist Program of Ministry of Science and Technology of China (Ethiopia-18-010) and National Natural Science Foundation of China (11950410502). The second author is supported by National Natural Science Foundation of China (11771216, 11301277), the Six Talent Peaks Project in Jiangsu Province [(2015-XCL-020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leta, T.D., Liu, W., Achab, A.E. et al. Dynamical Behavior of Traveling Wave Solutions for a (2+1)-Dimensional Bogoyavlenskii Coupled System. Qual. Theory Dyn. Syst. 20, 14 (2021). https://doi.org/10.1007/s12346-021-00449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00449-x

Keywords

Mathematics Subject Classification

Navigation