Skip to main content
Log in

Categorified canonical bases and framed BPS states

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We consider a cluster variety associated to a triangulated surface without punctures. The algebra of regular functions on this cluster variety possesses a canonical vector space basis parametrized by certain measured laminations on the surface. To each lamination, we associate a graded vector space, and we prove that the graded dimension of this vector space gives the expansion in cluster coordinates of the corresponding basis element. We discuss the relation to framed BPS states in \({\mathcal {N}}=2\) field theories of class \({\mathcal {S}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allegretti, D.G.L.: A duality map for the quantum symplectic double (2016). arXiv:1605.01599 [math.QA]

  2. Allegretti, D.G.L.: The geometry of cluster varieties from surfaces (2016). arXiv:1606.07788 [math.AG]

  3. Allegretti, D.G.L.: Laminations from the symplectic double. Geom. Dedicata. 199(1), 27–86 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Allegretti, D.G.L., Kim, H.K.: A duality map for quantum cluster varieties from surfaces. Adv. Math. 306, 1164–1208 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Annales de l’Institut Fourier 59(6), 2525–2590 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.G.: Gentle algebras arising from surface triangulations. Algebra Number Theory 4(2), 201–229 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bonahon, F., Wong, H.: Quantum traces for representations of surface groups in \(SL_2({\mathbb{C}})\). Geom. Topol. 15(3), 1569–1615 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Bridgeland, T.: Stability conditions on triangulated categories. Ann. Math. 166(2), 317–345 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Bridgeland, T.: Scattering diagrams, Hall algebras and stability conditions. Algebraic Geom. 4(5), 523–561 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Bridgeland, T., Smith, I.: Quadratic differentials as stability conditions. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 121(1), 155–278 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Brüstle, T., Zhang, J.: On the cluster category of a marked surface without punctures. Algebra Number Theory 5(4), 529–566 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Commentarii Mathematici Helvetici 81(3), 596–616 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (\(A_n\) case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Caorsi, M., Cecotti, S.: Categorical Webs and \(S\)-duality in 4d \({\cal{N}}=2\) QFT. Commun. Math. Phys. 368(3), 885–984 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Carnakci, I., Lampe, P.: An expansion formula for type A and Kronecker quantum cluster algebras (2018). arXiv:1807.07539 [math.QA]

  16. Cautis, S., Williams, H.: Cluster theory of the coherent Satake category. J. Am. Math. Soc. 32(3), 709–778 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Cerulli Irelli, G., Dupont, G., Esposito, F.: A homological interpretation of the transverse quiver Grassmannians. Algebras Represent. Theory 16(2), 437–444 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Cerulli Irelli, G., Esposito, F.: Geometry of quiver Grassmannians of Kronecker type and canonical basis of cluster algebras. Algebra Number Theory 5(6), 777–801 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Cho, S.Y., Kim, H., Kim, H.K., Oh, D.: Laurent positivity of quantized canonical bases for quantum cluster varieties from surfaces. Commun. Math. Phys. 1–51 (2019)

  20. Chuang, W.Y., Diaconescu, D.E., Manschot, J., Moore, G., Soibelman, Y.: Geometric engineering of (framed) BPS states. Adv. Theor. Math. Phys. 18(5), 1063–1231 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Cirafici, M.: Line defects and (framed) BPS quivers. J. High Energy Phys. 11, 141 (2013)

    MATH  Google Scholar 

  22. Cirafici, M.: Quivers, line defects, and framed BPS invariants. Annales Henri Poincaré 19(1), 1–70 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Cirafici, M., Del Zotto, M.: Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states—I (2017). arXiv:1703.04786 [hep-th]

  24. Córdova, C., Neitzke, A.: Line defects, tropicalization, and multi-centered quiver quantum mechanics. J. High Energy Phys. 9, 99 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations I: mutations. Sel. Math. New Ser. 14(1), 59–119 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Domínguez, S.: Arc representations (2017). arXiv:1709.09521 [math.RT]

  28. Dupont, G.: Transverse quiver Grassmannians and bases in affine cluster algebras. Algebra Number Theory 4(5), 599–624 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Dupont, G.: Generic variables in acyclic cluster algebras. J. Pure Appl. Algebra 215(4), 628–641 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Dupont, G., Thomas, H.: Atomic bases of cluster algebras of types \(A\) and \({\tilde{A}}\). Proc. Lond. Math. Soc. 107(4), 825–850 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Efimov, A.I.: Quantum cluster variables via vanishing cycles (2011). arXiv:1112.3601 [math.AG]

  32. Fedotov, S.: Framed moduli and Grassmannians of submodules. Trans. Am. Math. Soc. 365(8), 4153–4179 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Mathématiques de l’Institut des Hautes Études Scientifiques 103(1), 1–211 (2006)

    MATH  Google Scholar 

  34. Fock, V.V., Goncharov, A.B.: Dual Teichmüller and lamination spaces. Handbook of Teichmüller theory I, IRMA Lectures in Mathematics and Theoretical Physics 11, 647–684 (2007)

  35. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201(1), 83–146 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143(01), 112–164 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. Adv. Theor. Math. Phys. 17(2), 241–397 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Goncharov, A., Shen, L.: Donaldson-Thomas transformations of moduli spaces of \(G\)-local systems. Adv. Math. 327, 225–348 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebraic Geom. 2(2), 137–175 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Haupt, N.: Euler characteristics of quiver Grassmannians and Ringel-Hall algebras of string algebras. Algebras Represent. Theory 15(4), 739–755 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Keller, B., Yang, D.: Derived equivalences from mutations of quivers with potential. Adv. Math. 226(3), 2118–2168 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Labardini-Fragoso, D.: Quivers with potential associated to triangulated surfaces. Proc. Lond. Math. Soc. 98(3), 797–839 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Labardini-Fragoso, D.: Quivers with potentials associated to triangulated surfaces, Part II: Arc representations (2009). arXiv:0909.4100 [math.RT]

  45. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    MathSciNet  MATH  Google Scholar 

  46. Muller, G.: Skein algebras and cluster algebras of marked surfaces. Quantum Topol. 7(3), 425–503 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Musiker, G., Williams, L.: Matrix formulae and skein relations for cluster algebras from surfaces. Int. Math. Res. Not. 13, 2891–2944 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Musiker, G., Schiffler, R., Williams, L.: Bases for cluster algebras from surfaces. Compos. Math. 149(2), 217–263 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Qin, F., Keller, B.: Quantum cluster variables via Serre polynomials. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 668, 149–190 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Qiu, Y., Zhou, Y.: Cluster categories for marked surfaces: punctured case. Compos. Math. 153(9), 1779–1819 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Reading, N.: Universal geometric cluster algebras from surfaces. Trans. Am. Math. Soc. 366(12), 6647–6685 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Reineke, M.: Framed quiver moduli, cohomology, and quantum groups. J. Algebra 320(1), 94–115 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Rupel, D.: On quantum analog of the Caldero–Chapoton formula. Int. Math. Res. Not. 14, 3207–3236 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Seidel, P., Thomas, R.: Braid group actions on derived categories. Duke Math. J. 108(1), 37–108 (2001)

    MathSciNet  MATH  Google Scholar 

  55. Thurston, D.: Positive basis for surface skein algebras. Proc. Nat. Acad. Sci. 111(27), 9725–9732 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Williams, H.: Toda systems, cluster characters, and spectral networks. Commun. Math. Phys. 348(1), 145–184 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

In writing this paper, I have benefitted from conversations with many people, including Tom Bridgeland, Michele Cirafici, Michele Del Zotto, Joseph Karmazyn, Daniel Labardini-Fragoso, Sven Meinhardt, Andrew Neitzke, Harold Williams, and Yu Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan G. L. Allegretti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allegretti, D.G.L. Categorified canonical bases and framed BPS states. Sel. Math. New Ser. 25, 69 (2019). https://doi.org/10.1007/s00029-019-0518-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0518-3

Mathematics Subject Classification

Navigation