Skip to main content
Log in

Monge–Ampére iteration

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Recently Darvas–Rubinstein proved a convergence result for the Kähler–Ricci iteration, which is a sequence of recursively defined complex Monge–Ampére equations. We introduce the Monge–Ampére iteration to be an analogous, but in a sense more general, sequence of recursively defined real Monge–Ampére second boundary value problems, and we establish sufficient conditions for its convergence. Each step in the iteration is a carefully chosen optimal transportation problem. We determine two cases where the convergence conditions are satisfied and provide geometric applications for both. First, we give a new proof of Darvas and Rubinstein’s general theorem on the convergence of the Ricci iteration in the case of toric Kähler manifolds, while at the same time generalizing their theorem to general convex bodies. Second, we introduce the affine iteration to be a sequence of prescribed affine normal problems and prove its convergence to an affine sphere. These give a new approach to recent existence and uniqueness results due to Berman–Berndtsson and Klartag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexandrov, A.D.: Dirichlet’s problem for the equation \(\det \,z_{ij} = \phi (z_1,\ldots,z_n,z,x_1,\ldots,x_n)\) I. Vestnik Leningrad Univ. Ser. Mat. Meh. Astr. 13(1), 5–24 (1958)

    MathSciNet  Google Scholar 

  2. Berman, R.J., Berndtsson, B.: Real Monge–Ampère equations and Kähler–Ricci solitons on toric log Fano varieties. Ann. Fac. Sci. Toulouse Math. 22, 649–711 (2013)

    Article  MathSciNet  Google Scholar 

  3. Berman, R.J., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. J. Reine Angew. Math. (2016) (to appear)

  4. Blaschke, W.: Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie. Springer, Berlin (1923)

    MATH  Google Scholar 

  5. Borell, C.: Convex set functions in d-space. Period. Math. Hungar. 6(2), 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  6. Brascamp, H.J., Lieb, E.H.: On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MathSciNet  Google Scholar 

  7. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L.: Interior \({W}^{2, p}\) estimates for solutions of the Monge–Ampére equation. Ann. Math. 131, 135–150 (1990)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L.: A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity. Ann. Math. 131, 129–134 (1990)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5, 99–104 (1992)

    Article  MathSciNet  Google Scholar 

  11. Calabi, E.: Complete affine hyperspheres I. Symp. Math. 10, 19–39 (1972)

    MathSciNet  MATH  Google Scholar 

  12. Cheng, S.Y., Yau, S.T.: Complete affine hyperspheres part I: the completeness of affine metrics. Commun. Pure Appl. Math. 39, 839–866 (1986)

    Article  Google Scholar 

  13. Cox, D., Little, J., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  14. Darvas, T.: The Mabuchi geometry of finite energy classes. Adv. Math. 285, 182–219 (2015)

    Article  MathSciNet  Google Scholar 

  15. Darvas, T., Rubinstein, Y.: Convergence of the Kähler–Ricci iteration (2017). Preprint, arXiv:1705.06253

  16. Deicke, A.: Uber die Finsler-räume mit \({A}_i=0\). Arch. Math. 4, 45–51 (1953)

    Article  MathSciNet  Google Scholar 

  17. Delzant, T.: Hamiltoniens périodiques et images convexes de lapplication moment. Bull. de la S.M.F 116, 315–339 (1988)

    MATH  Google Scholar 

  18. Donaldson, S.K.: Kähler geometry on toric manifolds and some other manifolds with large symmetry. Handbook of Geometric Analysis. Advanced Lectures in Mathematics, vol. 1, pp. 277–300. International Press of Boston, Somverville (2008)

    Google Scholar 

  19. Dubuc, S.: Critères de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble) 27(1), 135–165 (1977)

    Article  MathSciNet  Google Scholar 

  20. Gigena, S.: Integral invariants of convex cones. J. Differ. Geom. 13, 191–222 (1978)

    Article  MathSciNet  Google Scholar 

  21. Guedj, V., Kolev, B., Yeganefar, N.: Kähler–Einstein fillings. J. Lond. Math. Soc. 88, 737–760 (2013)

    Article  MathSciNet  Google Scholar 

  22. Guillemin, V.: Kaehler structures on toric varieties. J. Differ. Geom. 40, 285–309 (1994)

    Article  MathSciNet  Google Scholar 

  23. Keller, J.: Ricci iterations on Kähler classes. J. Inst. Math. Jussieu 8, 743–768 (2009)

    Article  MathSciNet  Google Scholar 

  24. Klartag, B.: Affine hemispheres of elliptic type. Algebra i Analiz 29, 145–188 (2017)

    MathSciNet  Google Scholar 

  25. Leindler, L.: On a certain converse of Hölders inequality. ii. Acta Sci. Math. (Szeged) 33, 217–223 (1972)

    MathSciNet  MATH  Google Scholar 

  26. Lindsey, M., Rubinstein, Y.A.: Optimal transport via a Monge–Ampère optimization problem. SIAM J. Math. Anal. 49, 3073–3124 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lutwak, E.: On some affine isoperimetric inequalities. J. Differ. Geom. 23, 1–13 (1986)

    Article  MathSciNet  Google Scholar 

  28. Lutwak, E.: Extended affine surface area. Adv. Math. 85, 39–68 (1991)

    Article  MathSciNet  Google Scholar 

  29. McCann, R.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80, 309–323 (1995)

    Article  MathSciNet  Google Scholar 

  30. Nomizu, K., Sasaki, T.: Affine Differential Geometry: Geometry of Affine Immersions. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  31. Prékopa, A.: Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32, 301–315 (1971)

    MathSciNet  MATH  Google Scholar 

  32. Prékopa, A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Pulemotov, A., Rubinstein, Y.A.: Ricci iteration on homogeneous spaces (2016). Preprint, arXiv:1606.05064

  34. Rauch, J., Taylor, B.A.: The Dirichlet problem for the multidimensional Monge–Ampère equation. Rocky Mt. J. Math. 7(2), 345–364 (1977)

    Article  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  36. Rubinstein, Y.A.: The Ricci iteration and its applications. C. R. Acad. Sci. Paris 345, 445–448 (2007)

    Article  MathSciNet  Google Scholar 

  37. Rubinstein, Y.A.: Geometric quantization and dynamical constructions in the space of Kähler metrics. PhD thesis, Massachusetts Institute of Technology (2008)

  38. Rubinstein, Y.A.: Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics. Adv. Math. 218, 1526–1565 (2008)

    Article  MathSciNet  Google Scholar 

  39. Rubinstein, Y.A.: Smooth and singular Kähler–Einstein metrics. Geometric and Spectral Analysis Contemporary Mathematics, vol. 630, pp. 45–138. AMS, Providence (2014)

    Google Scholar 

  40. Trudinger, N.S., Wang, X.-J.: The Monge–Ampére equation and its geometric applications. Handbook of Geometric Analysis, vol. 1, pp. 467–524. International Press, Vienna (2008)

    Google Scholar 

  41. Villani, C.: Optimal Transport Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

  42. Wang, X., Zhu, X.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)

    Article  MathSciNet  Google Scholar 

  43. Wang, X.-J., Zhu, X.H.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 47–103 (2004)

    Article  Google Scholar 

  44. Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks go to Y.A. Rubinstein for suggesting the Monge–Ampére iteration as a fruitful topic of study and for his indispensable guidance, inspiration, and encouragement; and to T. Darvas for his insights into the Kähler–Ricci iteration and for welcoming all my questions along the way. This research was also supported by the BSF Grant 2012236 and the NSF Grants DMS-1515703 and DMS-1440140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Hunter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunter, R. Monge–Ampére iteration. Sel. Math. New Ser. 25, 73 (2019). https://doi.org/10.1007/s00029-019-0519-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0519-2

Keywords

Mathematics Subject Classification

Navigation