Skip to main content
Log in

Polyhedral realizations of crystal bases and convex-geometric Demazure operators

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The main object in this paper is a family of rational convex polytopes whose lattice points give a polyhedral realization of a highest weight crystal basis. Every polytope in this family is identical to a Newton–Okounkov body of a flag variety, and it gives a toric degeneration. In this paper, we prove that a specific class of polytopes in this family is given by Kiritchenko’s Demazure operators on polytopes. This implies that polytopes in this class are all lattice polytopes. As an application, we give a sufficient condition for the corresponding toric variety to be Gorenstein Fano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexeev, V., Brion, M.: Toric degenerations of spherical varieties. Sel. Math. (N.S.) 10, 453–478 (2004)

    Article  MathSciNet  Google Scholar 

  2. Anderson, D.: Okounkov bodies and toric degenerations. Math. Ann. 356, 1183–1202 (2013)

    Article  MathSciNet  Google Scholar 

  3. Brion, M.: Lectures on the geometry of flag varieties. In: Pragacz, P. (ed.) Topics in Cohomological Studies of Algebraic Varieties. Trends in Mathematics, pp. 33–85. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  4. Caldero, P.: Toric degenerations of Schubert varieties. Transform. Groups 7, 51–60 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chirivì, R.: LS algebras and application to Schubert varieties. Transform. Groups 5, 245–264 (2000)

    Article  MathSciNet  Google Scholar 

  6. Cox, D., Little, J., Schenck, H.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Math.ematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  7. Fang, X., Fourier, G., Littelmann, P.: Essential bases and toric degenerations arising from birational sequences. Adv. Math. 312, 107–149 (2017)

    Article  MathSciNet  Google Scholar 

  8. Fang, X., Fourier, G., Littelmann, P.: On toric degenerations of flag varieties. In: Representation Theory—Current Trends and Perspectives, EMS Series of Congress Reports, pp. 187–232. European Mathematical Society, Zürich (2017)

  9. Feigin, E., Fourier, G., Littelmann, P.: Favourable modules: filtrations, polytopes, Newton–Okounkov bodies and flat degenerations. Transform. Groups 22, 321–352 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fujita, N., Naito, S.: Newton–Okounkov convex bodies of Schubert varieties and polyhedral realizations of crystal bases. Math. Z. 285, 325–352 (2017)

    Article  MathSciNet  Google Scholar 

  11. Fujita, N., Oya, H.: A comparison of Newton–Okounkov polytopes of Schubert varieties. J. Lond. Math. Soc. (2) 96, 201–227 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gelfand, I.M., Zetlin, M.L.: Finite-dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk SSSR (N.S.) 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  13. Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1, 215–248 (1996)

    Article  MathSciNet  Google Scholar 

  14. Grossberg, M., Karshon, Y.: Bott towers, complete integrability, and the extended character of representations. Duke Math. J. 76, 23–58 (1994)

    Article  MathSciNet  Google Scholar 

  15. Harada, M., Kaveh, K.: Integrable systems, toric degenerations, and Okounkov bodies. Invent. Math. 202, 927–985 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hoshino, A.: Polyhedral realizations of crystal bases for quantum algebras of finite types. J. Math. Phys. 46, 113514 (2005)

    Article  MathSciNet  Google Scholar 

  17. Jantzen, J.C.: Representations of Algebraic Groups. Mathematical Surveys and Monographs, vol. 107, 2nd edn. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  18. Kashiwara, M.: Crystallizing the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys. 133, 249–260 (1990)

    Article  Google Scholar 

  19. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MathSciNet  Google Scholar 

  20. Kashiwara, M.: Global crystal bases of quantum groups. Duke Math. J. 69, 455–485 (1993)

    Article  MathSciNet  Google Scholar 

  21. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71, 839–858 (1993)

    Article  MathSciNet  Google Scholar 

  22. Kashiwara, M.: On crystal bases. In: Representations of Groups (Banff, AB, 1994), CMS Conference Proceedings, vol. 16, pp. 155–197. American Mathematical Society, Providence, RI (1995)

  23. Kaveh, K.: Crystal bases and Newton–Okounkov bodies. Duke Math. J. 164, 2461–2506 (2015)

    Article  MathSciNet  Google Scholar 

  24. Kaveh, K., Khovanskii, A.G.: Convex bodies and algebraic equations on affine varieties. Preprint, arXiv:0804.4095v1; a short version with title Algebraic equations and convex bodies appeared in Perspectives in Analysis, Geometry, and Topology, Progress in Mathematics, vol. 296. Birkhäuser, New York 2012, 263–282 (2008)

  25. Kaveh, K., Khovanskii, A.G.: Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. 176, 925–978 (2012)

    Article  MathSciNet  Google Scholar 

  26. Kiritchenko, V.: Divided difference operators on convex polytopes. In: Naruse, H., Ikeda, T., Masuda, M., Tanisaki, T. (eds.) Schubert Calculus—Osaka 2012. Advanced Studies in Pure Mathematics, vol. 66, pp. 161–184. Mathematical Society of Japan, Tokyo (2016)

    Chapter  Google Scholar 

  27. Kiritchenko, V.: Newton–Okounkov polytopes of flag varieties. Transform. Groups 22, 387–402 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kiritchenko, V.: Newton–Okounkov polytopes of Bott–Samelson varieties as Minkowski sums. Preprint arXiv:1801.00334v1 (2018)

  29. Kiritchenko, V., Smirnov, E., Timorin, V.: Schubert calculus and Gelfand–Tsetlin polytopes. Russ. Math. Surv. 67, 685–719 (2012)

    Article  MathSciNet  Google Scholar 

  30. Lazarsfeld, R., Mustata, M.: Convex bodies associated to linear series. Ann. Sci. I’ENS 42, 783–835 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3, 447–498 (1990)

    Article  MathSciNet  Google Scholar 

  32. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4, 365–421 (1991)

    Article  MathSciNet  Google Scholar 

  33. Lusztig, G.: Introduction to Quantum Groups. Modern Birkhäuser Classics. Birkhäuser, New York (2010). (reprint of the 1994 edition)

    Book  Google Scholar 

  34. Nakashima, T.: Polyhedral realizations of crystal bases for integrable highest weight modules. J. Algebra 219, 571–597 (1999)

    Article  MathSciNet  Google Scholar 

  35. Nakashima, T.: Polytopes for crystallized Demazure modules and extremal vectors. Commun. Algebra 30, 1349–1367 (2002)

    Article  MathSciNet  Google Scholar 

  36. Nakashima, T.: Decorated geometric crystals, polyhedral and monomial realizations of crystal bases. In: Chari, V., Greenstein, J., Misra, K.C., Raghavan, K.N., Viswanath, S. (eds.) Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory. Contemporary Mathematcis, vol. 602, pp. 143–163. American Mathematical Society, Providence, RI (2013)

    Chapter  Google Scholar 

  37. Nakashima, T., Zelevinsky, A.: Polyhedral realizations of crystal bases for quantized Kac–Moody algebras. Adv. Math. 131, 253–278 (1997)

    Article  MathSciNet  Google Scholar 

  38. Okounkov, A.: Brunn–Minkowski inequality for multiplicities. Invent. Math. 125, 405–411 (1996)

    Article  MathSciNet  Google Scholar 

  39. Okounkov, A.: Multiplicities and Newton polytopes. In: Kirillov’s Seminar on Representation Theory, American Mathematical Society Translations: Series 2, vol. 181, Advances in Mathematics: Scientific Journal, vol. 35, pp. 231–244. American Mathematical Society, Providence, RI (1998)

  40. Okounkov, A.: Why would multiplicities be log-concave? In: Duval, C., Guieu, L., Ovsienko, V. (eds.) The Orbit Method in Geometry and Physics. Progress in Mathematics, vol. 213, pp. 329–347. Birkhäuser, Boston (2003)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to Satoshi Naito for numerous helpful suggestions and fruitful discussions. The author would also like to express his gratitude to Dave Anderson and Valentina Kiritchenko for useful comments and suggestions. At the conference “Algebraic Analysis and Representation Theory” in June 2017, the author gave a poster presentation on the result of this paper. But there was a gap in the proof at that time, and the condition of the main result has been corrected from the one at the conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Fujita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was partially supported by Grant-in-Aid for JSPS Fellows (No. 16J00420).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, N. Polyhedral realizations of crystal bases and convex-geometric Demazure operators. Sel. Math. New Ser. 25, 74 (2019). https://doi.org/10.1007/s00029-019-0522-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0522-7

Keywords

Mathematics Subject Classification

Navigation