Skip to main content
Log in

Conic divisorial ideals of Hibi rings and their applications to non-commutative crepant resolutions

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we study divisorial ideals of a Hibi ring which is a toric ring arising from a partially ordered set. We especially characterize the special class of divisorial ideals called conic using the associated partially ordered set. Using our description of conic divisorial ideals, we also construct a module giving a non-commutative crepant resolution (NCCR) of the Segre product of polynomial rings. Furthermore, applying the operation called mutation, we give other modules giving NCCRs of it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Auslander, M.: Representation Dimension of Artin Algebras. Lecture Notes. Queen Mary College, London (1971)

    MATH  Google Scholar 

  2. Auslander, M., Reiten, I., Smalo, S.O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  3. Baeţica, C.: Cohen–Macaulay classes which are not conic. Commun. Algebra 32, 1183–1188 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bocklandt, R.: Generating toric noncommutative crepant resolutions. J. Algebra 364, 119–147 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)

    Article  MathSciNet  Google Scholar 

  6. Broomhead, N.: Dimer Model and Calabi–Yau Algebras, vol. 215(1011). Mem. Amer. Math. Soc., Providence (2012)

    MATH  Google Scholar 

  7. Bruns, W.: Conic Divisor Classes Over a Normal Monoid Algebra. Commutative Algebra and Algebraic Geometry. Contemporary Mathematics, vol. 390, pp. 63–71. Amer. Math. Soc., Providence (2005)

    Book  Google Scholar 

  8. Bruns, W., Gubeladze, J.: Divisorial linear algebra of normal semigroup rings. Algebra Represent. Theory 6, 139–168 (2003)

    Article  MathSciNet  Google Scholar 

  9. Bruns, W., Gubeladze, J.: Polytopes, Rings and K-Theory. Springer Monographs in Mathematics. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  10. Buchweitz, R.-O., Leuschke, G.J., Van den Bergh, M.: Non-commutative desingularization of determinantal varieties II: arbitrary minors. Int. Math. Res. Not. IMRN 9, 2748–2812 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dao, H., Iyama, O., Takahashi, R., Vial, C.: Non-commutative resolutions and Grothendieck groups. J. Noncommut. Geom. 9(1), 21–34 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dao, H., Iyama, O., Takahashi, R., Wemyss, M.: Gorenstein modifications and \({\mathbb{Q}}\)-Gorenstein rings. arXiv:1611.04137

  13. Dong, X.: Canonical modules of semigroup rings and a conjecture of Reiner. Discrete Comput. Geom. 27, 85–97 (2002)

    Article  MathSciNet  Google Scholar 

  14. Faber, E., Muller, G., Smith, K.E.: Non-commutative resolutions of toric varieties. Adv. Math. 351, 236–274 (2019)

    Article  MathSciNet  Google Scholar 

  15. Hashimoto, M.: Equivariant class group. III. Almost principal fiber bundles. arXiv:1503.02133

  16. Hashimoto, M., Hibi, T., Noma, A.: Divisor class groups of affine semigroup rings associated with distributive lattices. J. Algebra 149(2), 352–357 (1992)

    Article  MathSciNet  Google Scholar 

  17. Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Nagata, M., Matsumura, H. (eds.) Commutative Algebra and Combinatorics. Advanced Studies in Pure Mathematics, vol. 11, pp. 93–109. North-Holland, Amsterdam (1987)

    Chapter  Google Scholar 

  18. Ishii, A., Ueda, K.: Dimer models and the special McKay correspondence. Geom. Topol. 19, 3405–3466 (2015)

    Article  MathSciNet  Google Scholar 

  19. Iyama, O.: Auslander correspondence. Adv. Math. 210(1), 51–82 (2007)

    Article  MathSciNet  Google Scholar 

  20. Iyama, O., Nakajima, Y.: On steady non-commutative crepant resolutions. J. Noncommut. Geom. 12(2), 457–471 (2018)

    Article  MathSciNet  Google Scholar 

  21. Iyama, O., Reiten, I.: Fomin–Zelevinsky mutation and tilting modules over Calabi–Yau algebras. Am. J. Math. 130(4), 1087–1149 (2008)

    Article  MathSciNet  Google Scholar 

  22. Iyama, O., Wemyss, M.: Maximal modifications and Auslander–Reiten duality for non-isolated singularities. Invent. Math. 197(3), 521–586 (2014)

    Article  MathSciNet  Google Scholar 

  23. Kuznetsov, A.: Lefschetz decompositions and categorical resolutions of singularities. Sel. Math. (N.S.) 13(4), 661–696 (2008)

    Article  MathSciNet  Google Scholar 

  24. Nakajima, Y.: Mutations of splitting maximal modifying modules: the case of reflexive polygons. Int. Math. Res. Not. IMRN 23(2), 470–550 (2019)

    Article  MathSciNet  Google Scholar 

  25. Nakajima, Y.: Non-commutative crepant resolutions of Hibi rings with small class group. J. Pure Appl. Algebra 223(8), 3461–3484 (2019)

    Article  MathSciNet  Google Scholar 

  26. Rouquier, R.: Dimensions of triangulated categories. J. K Theory 1(2), 193–256 (2008)

    Article  MathSciNet  Google Scholar 

  27. Smith, K.E., Van den Bergh, M.: Simplicity of rings of differential operators in prime characteristic. Proc. Lond. Math. Soc. (3) 75(1), 32–62 (1997)

    Article  MathSciNet  Google Scholar 

  28. Špenko, Š., Van den Bergh, M.: Non-commutative resolutions of quotient singularities for reductive groups. Invent. Math. 210(1), 3–67 (2017)

    Article  MathSciNet  Google Scholar 

  29. Špenko, Š., Van den Bergh, M.: Non-commutative crepant resolutions for some toric singularities I. arXiv:1701.05255

  30. Špenko, Š., Van den Bergh, M.: Non-commutative crepant resolutions for some toric singularities II. J. Noncommut. Geom. (to appear). arXiv:1707.08245

  31. Stanley, R.P.: Combinatorics and invariant theory. Relations Between Combinatorics and Other Parts of Mathematics. Proceedings of Symposia in Pure Mathematics, vol. 34, pp. 345–355. Amer. Math. Soc., Providence (1979)

  32. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986)

    Article  MathSciNet  Google Scholar 

  33. Van den Bergh, M.: Cohen–Macaulayness of semi-invariants for tori. Trans. Am. Math. Soc. 336(2), 557–580 (1993)

    Article  MathSciNet  Google Scholar 

  34. Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)

    Article  MathSciNet  Google Scholar 

  35. Van den Bergh, M.: Non-Commutative Crepant Resolutions. The Legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2004)

    MATH  Google Scholar 

  36. Wemyss, M.: Flops and clusters in the homological minimal model program. Invent. Math. 211(2), 435–521 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Špela Špenko for valuable discussions concerning NCCRs and for explaining results in [28]. The authors also thank the anonymous referee for valuable comments. The first author is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 17K14177. The second author is supported by World Premier International Research Center Initiative (WPI initiative), MEXT, Japan, and JSPS Grant-in-Aid for Young Scientists (B) 17K14159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Nakajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higashitani, A., Nakajima, Y. Conic divisorial ideals of Hibi rings and their applications to non-commutative crepant resolutions. Sel. Math. New Ser. 25, 78 (2019). https://doi.org/10.1007/s00029-019-0523-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0523-6

Keywords

Mathematics Subject Classification

Navigation