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ABSTRACT 
Despite proof being fundamental to the mathematics discipline and its role as a means to convey 
mathematical content, little is known about the effect of resources on influencing students’ proof 
construction ability. The purpose of this study was to compare two didactic environments, one 
regarded as resourced (favored) and the other under-resourced (disadvantaged), in relation to 
the construction of a mathematical proof. Motivated by the discrepancies in the literature on the 
influence of school resources on students’ performance and the unfortunately prevalent view that 
the sole function of proof in mathematics is verification by using confirmatory cases, this study 
sought to examine the differences (if any) between resourced and under-resourced classrooms in 
relation to students’ proof construction ability. To this end, data were drawn from a proof-related 
task performed by 78 Grade 11 students in the Ethekwini Metropolitan area, South Africa. A 
modified version of the Proof Construction Assessment tool showed that students in resourced 
schools significantly performed better than those in under-resourced schools in relation to proof 
construction. In addition, there was an observable and noticeable effect of this. Specifically, at an 
alpha = .05, the t-test for independent means revealed a significant difference between the two 
groups, t(76) = 2.749, p < .01, d = .624 SD. The practical significance of the results emphasizes the 
importance of taking into account the role of resources when investigating the learning and 
teaching of proofs. Further, preliminary results also suggested that most students struggled to 
even begin to prove the proposition. Recommendations and implications for the students’ careers 
and future research are raised and discussed. 
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INTRODUCTION 
In all past decades, a wealth of educational research has shown that proof is a notoriously difficult concept 

for students (Thompson, Senk, & Johnson, 2012). Compounding this difficulty are studies that show that 
Learning and Teaching Support Material (hereafter LTSM) also influences the learning of proof. However, 
South Africa is a country wracked by rampant inequalities in economic circumstances and educational 
provision that has resulted in an education system characterized by two different school resource levels, one 
described as favored (advantaged) and the other under-resourced (disadvantaged) (Bertram & Hugo, 2008; 
Soudien, 2007). For instance, although most students receive textbooks for mathematics and other subjects, 
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some favored schools (referred to as Dinaledi Schools1 for the purpose of this study) have been provided with 
both textbooks and information technology software. 

Given this resource disparities across mathematics classrooms, it is only natural to ask whether school 
resources make any difference in the learning of proof. In addition, research on the influence of LTSM in 
mathematics performance has been inconclusive (Gustafsson, 2003). Therefore, researchers have yet to agree 
on a clear answer. To my knowledge, no study has yet examined students’ proof construction ability in terms 
of the resourcefulness of schools. The purpose of this comparative study was to examine the differences 
between students attending resourced and under-resourced in terms of proof construction ability. To frame 
this research, a review of literature is provided. However, prior to presenting a background to the study, key 
terms are clarified.  

By LTSM in this study is meant textbooks and information technology software including dynamic 
geometry software (hereafter DGS). In particular, computer applications like Geogebra and Sketchpad can be 
used to enculturate students into the practices of mathematicians which is characterized by experimentation, 
conjecturing, proving, and seeking counter-examples (de Villiers, 2004). The proving process involves 
argumentation. In the words of Douek (2009), ““[a]rgumentation” consists of one or more logically connected 
“arguments”” (p. 334). In this regard, a single proof is constituted by a constellation of these arguments. Seen 
in this light, a proof is a product of argumentation and proving is the activity of logically appropriating 
arguments to reach a conclusion. By verification is meant making sure that a mathematical conjecture is true 
for all cases. In validating the correctness of a mathematical proposition, an examination of whether the chain 
of logically connected axioms were used to arrive at a conclusion regardless of its form or aesthetic appeal, is 
conducted (Hanna, 2007). Another traditional approach in mathematics classrooms is to use some examples 
as confirmatory cases and then proceed to introduce deductive proof only as a means to verify that the 
conjecture being tested with examples is true and thus attain conviction. A conjecture is a proposition that is 
consistent with data and has not been proven to be either true or false (Uploaders, 2013). The main point here 
is to note that verification of a mathematical proposition can take two forms: empirical or deductive; empirical 
by selecting a few cases and deductive by logically connecting a set of axioms to produce a new result. 

BACKGROUND 
South Africa is a country wracked by rampant inequalities in economic circumstances and educational 

provision that has resulted in an education system characterized by two different school resource levels 
(Bertram & Hugo, 2008; Soudien, 2007). In the context of public schools, a minority of resourced and successful 
schools are found in established urban, middle class areas (Brodie, 2006). More important for this study, Reddy 
et al. (2012) found that these schools are provided with library materials, audiovisual resources, information 
technology software, specialized teachers and have the wherewithal to employ and pay from their coffers 
additional teachers (over and above those paid by the government) and thus reduce student-teacher ratio, tend 
to perform better. 

In contrast, about 85% of under-resourced schools (Bloch, 2009; Grant, 2014) whose performance was 
abysmal, were found in townships, rural communities, informal settlement areas of either tin shanties erected 
by the people themselves or small brick houses, and on farms (Bloch, 2009; Lubben, Sadeck, Scholtz, & Braund, 
2010). In addition, these schools lack sports fields for a variety of extramural activities, equipped laboratories, 
library or internet access, are characterised by indigenous cultural practices such as emphasis on respect for 
the elders and teachers, have large class sizes, and have students whose mother tongue differed from the 
medium of instruction. The lack of sporting facilities makes students turn their playgrounds into rudimentary 
sports field (Kane-Berman, 2017). 

Reddy et al. (2012) point out that where a school is located can have a substantial impact on whether its 
students typically are from economically and educationally advantaged home backgrounds and thus able to 
provide access to important additional resources such as libraries, media centres, or museums. Very little has 
changed in terms of resources even under the new democratically elected government, especially in previously 
disadvantaged schools. This evidence suggests that the promise of equal distribution of resources is yet to 
materialize (Sedibe, 2011). Accordingly, given real differences in schools’ resource levels (Soudien, 2007), there 

 
1 The Dinaledi Schools Initiative is a programme coordinated by the Department of Basic Education to support selected 
schools with LTSM (including scientific calculators and computer software programs) for mathematics and physical sciences. 
The ultimate aim was to increase the number of students studying mathematics and physical science in grades 10–12, 
especially female and historically disadvantaged students. 
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is a significant difference in argumentation quality between students in resourced and under-resourced 
schools (Lubben et al., 2010). This disparity in Euclidean geometry educational experiences contributed to 
gaps in student achievement. Where resources are not equally distributed the inevitable consequence is 
inequitable access to mathematical knowledge and this does not contribute to the attempts to arrest the 
notoriously persistent trends of poor student performance in Euclidean geometry. Thus, assessment on 
resources shows that students in under-resourced schools tend to perform poorly notwithstanding attempts 
by policymakers to redress the conditions under which achievement gaps grows. 

South Africa’s public schools were previously divided into five categories called “quintiles”, according to 
their poverty rankings based on the assumption that schools in wealthier communities were better able to 
raise funds and therefore required less financial support from government. According to the South African 
Government News Agency (2016), the Department of Basic Education (DBE) planned to introduce a two-
category system which classified schools as either no-fee paying or fee-paying effectively scrapping the system 
that divided schools into quintiles. The introduction of the new system is necessary owing to the fact that the 
quintile system has become difficult to implement as it is based on many different criteria and that in some 
areas, the question is whether parents could afford to pay or not (South African Government News Agency, 
2016). Regardless of the system adopted by a school, its students are required to construct proofs. In the next 
section, the function of proof in mathematics is considered given the fact that students’ lack of appreciation of 
the purpose of proof makes the learning of proofs meaningless (de Villiers, 1990). 

Functions of Proof in Mathematics 

Most students’ experience of proof is in Euclidean geometry (McCrone & Martin, 2004). In South Africa, as 
in many other countries, the function that proof performs is that of convincing students about the truth of a 
statement. Students’ actual action when confronted with proving activities entails the use of empirical 
arguments to prove the truth of mathematical statements. This anecdotal evidence is supported by research 
(for example, CadwalladerOlsker, 2011; Easdown, 2012; Herbst & Miyakawa, 2008). This conception of the 
function of proof as a means to merely verify the validity of mathematical statements influences their action 
in proving tasks (Smith, 2014). Although this conception of the function of proof is correct, proof performs 
many other functions in mathematics, namely, explanation, communication, discovery, and systematization 
(de Villiers, 1990). 

Verification 

A proof can be viewed as a tool to establish certainty of a conjecture, that is, verifying (making sure) that 
a conjecture is true for all cases. Verification denotes the removal of uncertainty by seeking, in the vocabulary 
of Harel and Sowder (1998), to convince or persuade someone or oneself about the validity of a conjecture. In 
the case of Harel (2013), he takes this idea of certainty further and claims that the “need for certainty is the 
natural human desire to know whether a conjecture is true—whether it is a fact” (p. 124). Therefore, 
empiricism is defeasible; there are historical examples where counter-examples overturned earlier 
generalizations. The main point here is to note that verification of a mathematical proposition can take two 
forms: empirical or deductive; empirical by selecting a few cases and deductive by logically connecting a set of 
axioms to produce a new result. 

Explanation 

The explanatory function of proof pertains to the provision of insight into why a proposition is true. 
Whereas a theorem records an important proposition about certain ideas and their relationships, its proof 
spells out and records how that proposition comes to be true (Herbst & Miyakawa, 2008). Thus, a proof 
provides an explanation of why a proposition is true. This view is supported by Harel (2013) who reserves the 
term explaining for the “mental act one carries out to understand the cause for a conjecture to be true or false” 
(p. 128). 

According to Hanna (2000), for a proof to explain, it needs to make use of well-known and well-understood 
properties of the mathematical objects involved. She suggests that, given that the level of conviction is directly 
related to understanding, a proof that explains deepens existing conviction. Mathematicians often value one 
proof over another on the basis of its explanatory power (CadwalladerOlsker, 2011). Explanation seems to be 
of greater importance than verification because when proof is viewed as a means to explain why a proposition 
is true substantial improvement in students’ attitude towards proof appears to take place (de Villiers, 1998). 
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Communication 

Mathematical proof is an essential tool for the communication of mathematical thinking. One way of 
communicating a proof of a conjecture is to write it down for publishing to the wider mathematical community. 
Communication concerns sense making and transmission of socially constructed knowledge publicly – both in 
discourse and in writing – that is acceptable to the mathematical community. 

A defining characteristic of proof is its public nature. Essentially, mathematicians communicate their 
results through publishing them in mathematical journals; thus, making them accessible to the public, 
including the mathematical community. This social aspect of proof facilitates an understanding of what counts 
as justification in the mathematical community and thus communicates the nature of mathematical argument. 
In other words, proof is a means to demonstrate the standards (criteria) for communication in mathematics. 

Discovery 

The discovery function of proof relates to the generation of new results (theorems) through proof. Similar 
to Stylianides (2009), the phrase “new results” is used to describe proof knowledge that students add to their 
existing knowledge base as a result of constructing a proof. Thus, by generation or creation of new mathematics 
relates to what students produce as new to them but may have been known to the community of mathematics 
scholarship. The discovery aspect within the concept of proof involves making conjectures and attempting to 
provide arguments to justify them. As de Villiers (1997) points out, a proof often leads to new insights which 
in turn lead to the discovery of new or additional properties. 

Systematization 

The systematization of mathematical knowledge involves the organization of results previously thought to 
be unrelated into the existing deductive system of axioms, major concepts (definitions) and theorems (de 
Villiers, 1990). According to Knuth (2002), based on his experience both as a high school teacher and as a 
teacher educator, many students view the many theorems that they are asked to prove as essentially 
independent of one another rather than as related by the underlying axiomatic system. Knuth’s (2002) 
sentiments resonate with my own classroom experience. Worth mentioning is that this systematization 
function is important in that it organizes individual statements into a coherent system and exposes the 
underlying logical relationships between these statements. 

Learning and Teaching Support Material (LTSM) 

Eric Hanushek (1986, 1997), the most influential authority on the subject (Burtless, 1996), emphatically 
concludes that there appears to be no strong, consistent or systematic relationship between LTSM and 
mathematical performance. In fact, he even found that resources have a negative effect on students’ 
performance. Therefore, according to him, resources are only tenuously related to measured performance. This 
conclusion has been challenged and is hotly debated by mathematics education researchers. After a reanalysis 
of Hanushek’s evidence, Hedges, Laine, and Greenwald (1996) found that the typical relation between input 
and outcome was positive and large enough to have important implications for educational policy. Recently, 
Lee and Zuze (2011) found that the level of school resources make more of a difference in economically 
developing countries like South Africa than in economically developed countries. Further, Mogodi (2013) 
conducted a study with a focus on understanding the use of computer technology in one Dinaledi school. He 
found that computer technology was not key in knowledge acquisition among students in the Dinaledi schools 
intervention programme as envisioned by the DBE. Therefore, the role of instructional resources on proof 
functions is interrogated here on the basis that some of the findings could be explained from resources 
perspectives. 

Dynamic geometry software in proving 

In this study, a school with textbooks and DGS is referred to as resourced and that with only textbooks as 
under-resourced. The rationale for this distinction emanates from the notion that DGS tends to be useful in 
demonstrating the verification and discovery functions of proof (de Villiers & Heideman, 2014). The DGS has 
the drag mode that makes it possible for the student to continuously experiment by varying geometric 
configurations so as to quickly and easily investigate the veracity of particular conjectures (de Villiers, 1998). 
Providing students with opportunities to use DGS allows them to observe patterns and see connections and 
thus support concept development in a way which would not be possible with pencil and paper (Denton, 2017). 
In general, the existing research is very positive about the use of DGS to support the learning of geometry (for 

http://www.iejme.com/


 
 
 INT ELECT J MATH ED 
 

 
http://www.iejme.com   5 / 15 
 
 
 

example, Arzarell, Bairral, Danie, & Yasuyuki, 2013; Jones, 2011; Ruthven, 2012). As Christou, Mousoulides, 
Pittalis, and Pitta-Pantazi (2004) point out, the availability of DGS in the classroom gives a new impetus on 
the teaching of geometry based on students’ investigations and explorations. 

Thus, access to DGS can motivate students to visualize, investigate, and explore geometric theorems by 
experimenting a multitude of examples, and then making conjectures by observing recurring patterns. 
According to Pandiscio (2002), DGS enables students to “understand the ideas embedded in the theorems and 
problems more fully than they would have understood without the aid of technology” (p. 220). Students who 
use DGS demonstrate improved academic performance (Sarracco, 2005). In his exploration of the nature of 
proof, de Villiers (2012) shows how, with the aid of DGS, students can come to an understanding of the various 
functions of proof in mathematics. 

Principles of Proof Understanding 

Numerous studies have shown that for most students (for example, Chazan, 1993; Hanna, et al., 2009; 
Martin, 1997), inductive arguments, that is, a collection of few cases, is proof enough that a conjecture is true. 
In an attempt to address students’ difficulties with understanding geometric proof, Dreyfus and Hadas (1987) 
formulated six principles that constitute a basis for understanding geometric proof. The discussion of these 
principles is beyond the scope of this study save to point out that they state that:  

1. A theorem has no exceptions. A mathematical statement is said to be correct only if it is correct in every 
conceivable instance. 

2. The dual role of proof is to convince and to explain. Even ‘obvious’ statements have to be proved. In 
particular, a proof may not be built on the apparent features of a figure. 

3. A proof must be general. One or more particular cases cannot prove a general statement. However, one 
counter-example is sufficient to refute it. 

4. The assumptions of a theorem must be clearly identified and distinguished from the conclusion. 
5. The converse of a correct statement is not necessarily correct. 
6. Diagrams that illustrate statements have benefits and limitations. Diagrams are general 

representations of the statements. 

Gender and Mathematical Proof 

Gender is important to consider as a characteristic because, as Hofstede (1986) points out, within certain 
cultures there is a higher degree of differentiation and inequity between genders than others. The differences 
among the genders are found in schools; microcosm of society. In simple terms, the differences in gender 
performance in proof construction and argumentation ability may be assumed to be driven by cultural factors 
(for example, gender roles). Support for this approach is found in Willingham and Cole’s (1997) argument that 
“young women [scored] higher than young men on domestic, artistic, writing, social service, and office service 
vocational interests and young men [scored] higher than young women on business, law, politics, mathematics, 
science, agriculture, athletics, and mechanical interests” (p. 178). Geary (1998) presents evidence to support 
the assertion that on average, it appears that women tend to be more interested in careers that involve organic 
matters, for example, biology and medicine as opposed to men who tend to be more inorganic matters, for 
example, physics and engineering. In the words of Geary (1999), 

[s]exual selection (male–male competition in particular) has resulted in a greater 
elaboration of the cognitive and brain systems that support navigation in physical space 
in men than in women. One feature of these systems is an intuitive understanding of 
Euclidean geometry. (p. 272) 

Interesting arguments have been made on this issue of gender differences in which there seems to be 
empirical support for the notion that the mathematical domain of Euclidean geometry seems to favor male 
students than female students. In addition, Healy and Hoyles (2000) found that the gender differences in the 
belief that empirical arguments are proof exist also among students in algebra. The source of this gender 
difference is assumed to be of social and occupational interests. 
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THE OPTIMAL RESOURCE THEORY (ORT) 
Although correlational statistical techniques were used to study the differences in the two school types in 

terms of resources, the use of such statistical approaches, while beneficial, also requires theoretical rationales 
that inform best practices (Anderson, 2015). The optimal resource theory (ORT) developed by Anderson (2015) 
was used to conceptualize the research questions, methodology, analysis, and interpretation of the results of 
this study. According to ORT, the influence of resources on students’ outcomes is best understood from the 
perspectives of internally controlled micro-policies and micro-practices on positive student outcomes (that is, 
the traditional indicators of academic mastery such as grades, standardized tests, skill mastery, etc.) or 
personal development (that is, racial identity, moral development, self-discipline, societal awareness, etc.). In 
this study, the focus was on the former; students’ outcomes in relation to resources. The theory espouses six 
principles: one chief principle and the other five which are collectively referred to as governing principles. 

Chief Principle 

Anderson (2015) argues that positive student outcomes relates to assessing students’ incremental 
achievement rather than systemic change by examining micro-policies and practices which are represented by 
internally controlled decisions at a given local level (for example, district, school, and classroom). As a 
consequence, such internally controlled practices may more readily inform best-practice research. The central 
tenet of the ORT is that it evokes investigation of differential effects of micro-policies and micro-practices 
which are within the purview of the school or organization’s control, with a specific focus on positive student 
outcomes. 

Governing Principles 

The first governing principle of ORT posits that multiple factors that influence student outcomes should 
be examined. The second governing principle focuses on including externally controlled factors (gender, class, 
etc.), with the intent of controlling for these factors rather than rather that considering them as de facto cause 
because, as Anderson (2015) points out, externally controlled factor manipulation is not a goal of ORT. While 
the third governing principle of ORT recognizes that nonschool-based decisions influence educational outcomes 
as well, it entails the manipulation of internally controlled decisions. Incremental progress comprise ORT’s 
fourth governing principle which emphasizes the notion that reasonable outcomes rather than comprehensive 
change is the most important outcome to expect.  

Final, the fifth ORT governing principle is the finite resource decision making; it acknowledges that schools 
will always operate with finite resources and therefore, rather than focus on what schools lack, ORT focuses 
on maximizing progress with available resources (Anderson, 2015). A summary of the theory with its guiding 
principles is presented in Figure 1. As already mentioned, using ORT principles, the effect of school resources 
related to proof construction was investigated. 

To examine how LTSM influence Grade 11 students’ proof construction ability, the general research 
question guiding this study was: What is the role of resources in two different didactic learning environment? 
For data collection purposes, the following sub-questions were posed: 

1. How are students attending resourced schools different from those attending under-resourced schools 
in relation to proof construction ability?  

2. Independent of whether the difference is statistically significant or not, is the size of the effect of this 
difference of practical significance? 

Given the efforts of the new dispensation in the South African political space to reverse the inequalities 
among the previously disadvantaged communities in addition to the five tenets (that is, governing principles) 
of ORT, the role of resources on the learning of the proof concept led to expectation of some differences between 
Grade 11 students attending resourced and under-resourced schools in terms of proof construction ability. 
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METHOD 

Participants 

The sample in this study consisted of three components: schools, teachers, and students. Participants were 
37 Grade 11 students in one mathematics classroom in a Dinaledi high school and 41 students in one 
mathematics classroom in a school that was outside the Dinaledi project, in the Ethekwini Metropolitan area, 
South Africa. The Ethekwini Metropolitan is in the KwaZulu-Natal province which is a geographical large 
area bordered by the Indian Ocean in the east and also shares borders with Mozambique, Swaziland, and 
Lesotho. The schools were representative of the general population of Dinaledi group of schools. The 
sociodemographic of the whole sample is depicted in Table 1. 

A brief description of the two classroom environments and their corresponding practices was worth 
providing. In the Dinaledi school, the female teacher had been teaching for nearly 11 years and the other 
teacher in the nonDinaledi school for more than 15 years. The two classrooms were relatively similar in 
practices. Both teachers routinely followed the curriculum as reflected in the textbooks endorsed by the DBE. 
A typical mathematics classroom practice for both teachers included discussing previous work (mainly 
homework), introducing new material, and drill and practice of newly introduced concepts and terms. Seating 
arrangements are very important to the classroom; they may determine the extent to which interactions take 
place in addition to the classroom atmosphere, and student behavior. Students were seating on desks in 
traditional row format; they could only view other students on their sides and the back of the student in front. 
As depicted in Table 1, the classes were of average size. It was unsurprising therefore that these teachers 
were the mathematical authority in the classrooms; they were in control in the sense that they evaluated each 
of the students’ responses and answered their own questions. A few broken windows were observed in the 
nonDinaledi classroom. 

 
Figure 1. Optimal Resource Theory (ORT) with chief principle and governing principles. Adapted from 
Anderson (2015, p. 28) 
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Material 

A modified Proof Construction Assessment instrument was used to examine Grade 11 students’ ability to 
do proof. McCrone and Martin’s (2004) proof construction instrument revised and extended Dreyfus and 
Hadas’ (1987) six principles that constitute a basis for understanding Euclidean proof. Briefly, the instrument 
involves items in which students construct partial or complete proofs (independently) in addition to generating 
conditional statements and local deductions. The Proof Construction Assessment instrument was designed to 
measure students’ varying levels of ability to engage in formal logical reasoning. This measurement 
instrument included items with varying degrees of support to evaluate proof construction ability at four levels. 

However, the focus of this study was to assess students’ ability to independently construct a mathematical 
proof. Specifically, students were required to prove the conjecture that The angles of a triangle sum up to 180 
degrees. This statement was already familiar to them because it was treated in the previous grade (10) and 
therefore it was expected that they believed it to be true. The rationale for focusing on Euclidean geometry is 
that geometry is traditionally the domain of mathematics in which students first encounter formal proofs and 
are required to construct them (McCrone & Martin, 2004). 

Analysis of the Proof-related Task 

There are many factors influencing students’ understanding of proof. Some are attitudinal and some 
cognitive. For instance, in school mathematics as well as in the mathematics discipline itself, a convincing 
argument for one person may be entirely unconvincing for another (Harel & Sowder, 1998). The modified Proof 
Construction Assessment instrument (McCrone & Martin, 2004), designed to measure students’ varying levels 
of ability to engage in formal logical reasoning, was the basis of the analysis. In modifying the instrument, I 
considered the fact that there are a few consistent standards— for instance, rigor (delineating only axioms to 
make leaps from one statement to another to reach conclusion), generality, and logical reasoning—that are 
essential elements of a convincing proof (McCrone & Martin, 2004). More precisely, students’ proofs were coded 
in terms of five features. A sample student work in Figure 2 shows one student's (Presh N, not her real name) 
attempt to engage in a proving task designed to gauge their competency in proving a proposition and 
systematizing axioms. 

If no attempt was made to solve the problem, a zero score was allocated. Attempts that merely used 
informal arguments (enumeration of confirmatory cases) were awarded a score of 1. This score signifies the 
point that empirical arguments are the basis of gaining conviction in the truth of a statement (de Villiers, 
1990). Rigor was judged by the presence of a warrant, that is, a statement that connects a claim to the data 
(Toulmin, 2003). The overall assessment of the generality of the proof was awarded a score of one bringing the 
total score to 10. A summary of the coding scheme is depicted in Table 2. 

Table 1. Sociodemographic Characteristics of the Sample 

Characteristic 
Female Male 

Total n = 44 n = 34 
(56.4%) (43.6%) 

Age    
 M 16.42 16.85 16.64 
 SD 1.28 1.37 1.97 

School type     
 Resourced 20 17 37 
 Under-resourced 24 17 41 

Race    
 African 23 19 42 
 Indian 14 12 26 
 Coloured 7 3 10 

Socioeconomic status   
 Low 26 21 47 
 Middle 14 8 22 
 High 4 5 9 
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RESULTS 
In this section, a preliminary analysis of the data is conducted. Then, the results are presented. Final, the 

interpretation of the t-test results is made. The SPSS v.24 (IBM Corp, Released 2016) was used to run the t-
test to check the mean differences in students’ functional understanding of proof from the resources 
perspective. Prior to performing an independent (separate and distinct) samples t-test to compare the means 
of these two groups of students, the data were screened for normality, missing data, and outliers. 

Preliminary Analysis 

The values of numerical measures of shape of the distribution (kurtosis and skewness) were within the 
acceptable range of -1 and +1 (Wilson & MacLean, 2011). However, given that skewness and kurtosis are a 
function of sample size, further evidence in support of normality was sought. As depicted in Figure 3, using 
the Normal Q-Q Plot, there is no evidence of outliers and the scores are reasonably normally distributed since 
the point are closer to the straight line. 

 
Figure 2. Presh N’s (pseudonym) Proof of Proposition that “The interior angles of a triangle on a plane sum 
up to 180 degrees” 

Table 2. The structure of LFUP questionnaire 
Category Number of items 
No attempt/idiosyncratic argument 0 
Inductive argument 1 
Rigour (claim & justification) 2 
Logical connection 1 
Generality of proof 1 
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Further, the data were normally distributed and equality of variance testing of the data was examined. As 
explained in Table 3, given that the Levene’s test indicated a non-significant result, it follows that the 
variances of the two populations were unequal across the two groups (that is, p > .05). Hence, the row of results 
(that is, equal variances assumed) was consulted. Given that these results and that the scores were ratio 
scaled, the data were amenable to parametric statistical analyses (Creswell, 2012). Thus, this result evoked 
confidence that the conclusions drawn from this t-test were accurate. With these preliminary analysis results 
in mind, I proceeded to perform a t-test for independent samples; the assumptions of a t-test were not violated. 

Among Grade 11 students at the two schools (n = 78), there was a statistically significant difference 
between the students attending resourced school (M = 5.51, SD = 2.82) and those attending an under-resourced 
school (M = .78, SD = 2.71) on proof construction ability. The differences in the comparison of students’ proof 
construction ability were based on their responses on the proof-related task. However, it is not only important 
to rely on the p-value to know whether the difference is statistical significant, but also quantifying the strength 
of the conclusion on the difference between two means is equally important. 

In this light, effect size was used to determine whether the difference was significant in a practical sense. 
The practical significance of mean scores for the two groups were examined in terms of standard deviation 
units. In line with Creswell’s (2012) recommendation, the differences between the two means were practically 
significant if the effect size was .50 or above. In light of the fact that the standard deviations of the two groups 
were almost similar in this study, Cohen’s (1988) d was used to express the size of the effect in standard 
deviations. In this study, the effect size d = .624 suggested a medium effect in a practical sense. In particular, 
this means that the average student’s proof construction ability in a resourced school was just over half 
standard deviations higher than a student in an under-resourced school in terms. Indeed, as found in various 
research studies (for example, de Villiers, 1990; Healy & Hoyles, 2000), the other interesting result was that 
the use of confirmatory examples as a means to prove the truth of a mathematical statement was prevalent 
in high school. 

In addition, 73% of the students in the resourced classroom environment were above the mean of the 
students in the under-resourced classroom and there was a 66% chance that a student picked at random from 
the resourced classroom will have a higher proof construction ability compared to a student picked at random 

 
Figure 3. The Normal Q-Q Plot for normality of scores in the proof test 

Table 3. The t-test for differences of means of the two groups of students 
Levene’s Test for Equality of Variances t-test for Equality of Means 

  F Sig. t df Sig. (2-tailed) 
Proof 
Construction 

Equal variances assumed .209 .649 2.749 76 .007 
Equal variances not assumed   2.754 75.654 .007 

 

http://www.iejme.com/


 
 
 INT ELECT J MATH ED 
 

 
http://www.iejme.com   11 / 15 
 
 
 

from the under-resourced classroom (probability of superiority). Thus, this effect is observable and noticeable 
as between the heights of 14- and 18-year-old females. Overall, at an alpha = .05, the t-test for independent 
means revealed a significant difference between the two groups, t(76) = 2.749, p < .01, d = .624 SD. 

Proof Construction Performance 

As depicted in Table 4, the results from the proof-related task revealed that students in both classes 
seemed to struggle to construct a proof despite one more student being able to construct a proof in the Dinaledi 
class than in the nonDinaledi class. The results also show a concerning trend; most students (32%) struggle 
to put together statement or claims that related to the task. Although this aspect of results was not a subject 
of the investigation, it provided preliminary insights into the extent to which students find proof difficult. One 
interpretation of this result could be that they lacked the requisite content knowledge (that is, knowledge of 
definitions and theorems). Future studies can be conducted to clarify this point. 

DISCUSSION AND CONCLUSION 
The purpose of this study was to explore the role of resources (LTSM) on Grade 11 students’ functional 

understanding of proof in mathematics. Anderson’s (2015) ORT was used as a framework for the analysis of 
students’ proof construction ability. The findings that differences in LTSM (which are internally controlled 
resources) affect students’ ability to construct proof provided strong and definitive evidence in favor of 
investing in LTSM. In other words, the infusion of LTSM in Dinaledi schools provides tangible mathematical 
ability to construct proof and so resources do make a difference. Given that the results were not only 
statistically significant but also practically significant, attention to the disparity in Euclidean geometry 
educational experiences indeed contributed to gaps in student achievement. Although the best-known research 
findings on the role of resources in the learning of mathematics seem to be at odds with each other, at least 
one of the conclusions must be wrong. The discussion is organized in terms of the two research questions. 
Consistent with the prediction of the ORT, the results showed that maximizing progress and manipulating 
internally controlled resources can contribute to student proof construction ability (Anderson, 2015). 

The first research question was designed to determine whether students’ proof construction ability differed 
significantly according to the didactic environment in which they found themselves. In particular, the question 
was: How are students attending resourced schools different from those attending under-resourced schools in 
relation to understanding the functions of proof? The data indicated that students in the resourced classroom 
tend to construct proofs better. It is such ability to construct proof that engenders the learning of mathematical 
content (Inglis, Mejia-Ramos, Weber, & Alcock, 2013). Thus, it appeared especially important to gain insight 
into students’ proof construction ability because it revealed the extent to which inductive arguments were seen 
as constituting mathematical proof. Similar to Hanushek (1986, 1997), the findings in the present study 
provide evidence that LTSM lead to notable gains in students’ mathematical performance. Given the fact that 
South Africa is a developing country, these results also confirm Lee and Zuze’s (2011) assertion that classroom 
resources matter in the learning of mathematics. In contrast, Mogodi (2013) found that LTSM (especially 
computer technology software) has little impact on student learning. This result is contested in that Mogodi’s 
(2013) study investigated the effect of computer technology in mathematics in general. Specifically, in the 
seven research questions he posed, only one was intended to respond to effect of computer technology on 
mathematics learning and teaching. In addition, his study’s setting was rural which involved a school that 
experienced intermittent network connectivity at the time. 

The second research question sought to gain insight into the practical significance of this difference, 
independent of whether the difference was statistically significant or not. The result suggested that the 
variation of scores around the mean for students in the under-resourced classroom was less than that of those 

Table 4. Students’ performance on the proof problem 

Category Proof Assessment scores 
Dinaledi classroom NonDinaledi classroom 

No attempt/idiosyncratic argument 10 15 
Inductive argument 6 14 
Rigour (claim & justification) 13 9 
Logical connection 6 2 
Generality of proof 2 1 
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in resourced classroom. In fact, the effect size result of .624 suggested that the average student’s proof 
construction ability in the resourced classroom was higher than that of a student in an under-resourced 
classroom. The modest effect notwithstanding, the influence of LTSM on students’ proof construction ability 
was evident and therefore required attention from educational authorities responsible for Dinaledi schools. 
Thus, this effect suggested that there was a meaningful difference; students in favored didactic classroom 
environments tend to construct proofs noticeably better than those in less didactically favored classroom 
environments. The insight of a rocket scientist is not necessary to recognize that the results might be diluted 
because, probably students in resourced schools commonly come from middle class families—a variable that 
was excluded from this study— who can provide their children with steady access to DGS in their 
smartphones. One other limitation of this study was methodological; longitudinal studies may be able to 
provide better insight on students’ proof construction ability better that the single time period covered by this 
study. For instance, the results may reflects other differences between the schools such as student effort which 
may have a stronger effect on proof construction than the proof-related task could detect. 

The unique contribution of this study is that it adds to our knowledge of the role of resources by shining 
the spotlight specifically on the students’ proof construction ability in mathematics classrooms. The findings 
have important implications for the participation of students in science, technology, engineering, and 
mathematics (STEM) careers and policymakers. Future studies can shed more light on the effect of 
socioeconomic status on students’ attempts to see proof as a means to convey mathematical content (that is, a 
sense-making tool for the relationships among mathematical objects even for schools outside the Dinaledi 
programme). Such studies may help to clarify the seemingly conflicting findings about the effects of resources 
on students’ ability to construct mathematical proof. In addition, the preliminary results suggested that most 
students lack the prerequisite content knowledge to construct a proof. Future studies can be conducted to 
clarify this point. 
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