Skip to main content
Log in

Symmetric Periodic Solutions for the Spatial Maxwell Restricted \(N+1\)-Problem with Manev Potential

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In the spatial Maxwell restricted \(N+1\)-body problem, the motion of an infinitesimal particle attracted by the gravitational field of (N) bodies is studied. These bodies are arranged in a planar ring configuration. This configuration consists of \(N-1\) primaries of equal mass m located at the vertices of a regular polygon that is rotating on its own plane about its center of mass with a constant angular velocity \(\omega \). Another primary of mass \(m_0=\beta m\) (\(\beta >0\) parameter) is placed at the center of the ring. Moreover, we assume that the central body may be an ellipsoid, or radiation source, which introduces a new parameter e. The existence of several families of symmetric periodic solutions for the spatial Maxwell restricted \((N+1)\)-problem with Manev potential is proved. More precisely, firstly we get symmetric periodic solutions around the central body (attractor or repulsor) close to the equatorial plane and small parameter of oblateness. Secondly, we obtain symmetric periodic solutions far away of the central body and peripherals, close to the equatorial plane with arbitrary oblateness. Furthermore, all these families of periodic solutions are stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  1. Alberti, A., Vidal, C.: New families of symmetric periodic solutions of the spatial anisotropic Manev problem. J. Math. Phys. 56(1), 012901 (2015). https://doi.org/10.1063/1.4904016

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti, A., Vidal, C.: Periodic solutions of symmetric Kepler perturbations and applications. J. Nonlinear Math. Phys. 23(3), 439–465 (2016). https://doi.org/10.1080/14029251.2016.1204721

    Article  MathSciNet  MATH  Google Scholar 

  3. Arribas, M., Elipe, A.: Bifurcations and equilibria in the extended N-body ring problem. Mech. Res. Commun. 31(1), 1–8 (2004). https://doi.org/10.1016/S0093-6413(03)00086-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrabés, E., Cors, J., Vidal, C.: Spatial collinear restricted four-body problem with repulsive Manev potential. Celestial Mech. Dyn. Astron. 129(1–2), 153–176 (2017). https://doi.org/10.1007/s10569-017-9771-y

    Article  MathSciNet  MATH  Google Scholar 

  5. Elipe, A., Arribas, M., Kalvouridis, T.: Periodic solutions in the planar (n+1)-ring problem with oblateness. J. Guid. Control Dyn. 30(6), 1640–1648 (2007). https://doi.org/10.2514/1.29524

    Article  Google Scholar 

  6. Elipe, A.: On the restricted three-body problem with generalized forces. Astrophys. Space Sci. 188(2), 257–269 (1992). https://doi.org/10.1007/BF00644913

    Article  MathSciNet  MATH  Google Scholar 

  7. Fakis, D., Kalvouridis, T.: Dynamics of a small body under the action of a Maxwell ring-type N-body system with a spheroidal central body. Celestial Mech. Dyn. Astron. 116(3), 224–229 (2013). https://doi.org/10.1007/s10569-013-9484-9

    Article  MathSciNet  Google Scholar 

  8. Llibre, J., Stoica, J.: Comet- and Hill-type periodic orbits in restricted (N + 1)-body problems. J. Diffier. Equ. 250, 1747–1766 (2011)

    Article  MathSciNet  Google Scholar 

  9. Maneff, G.: Gravitation et le principe de l’ égalité de l’action et de la réaction. Comptes Rendus de l’Académie des Sciences, Serie IIa: Sciences de la Terre Planetes 178, 2159–2161 (1924)

    MATH  Google Scholar 

  10. Meyer, K.R.: Periodic Solutions of the N-Body Problem. Springer, Berlin (1999). https://doi.org/10.1007/BFb0094677

    Book  MATH  Google Scholar 

  11. Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd edn. Springer-Verlag, New York (2009). https://doi.org/10.1007/978-3-319-53691-0

    Book  MATH  Google Scholar 

  12. Meyer, K.R., Palacián, J.F., Yanguas, P.: Geometric averaging of Hamiltonian systems: periodic solutions, stability, and KAM tori. SIAM J. Appl. Dyn. Syst. 10(3), 817–856 (2011). https://doi.org/10.1137/100807673

    Article  MathSciNet  MATH  Google Scholar 

  13. Meyer, K.R., Palacián, J.F., Yanguas, P.: Invariant tori in the Lunar problem. Publ. Mat. 58(suppl.), 353–394 (2014). https://doi.org/10.5565/PUBLMAT_Extra14_19

    Article  MathSciNet  MATH  Google Scholar 

  14. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967). https://doi.org/10.1016/B978-0-12-395732-0.X5001-6

    Book  MATH  Google Scholar 

  15. Yanguas, P., Palacián, J., Meyer, K., Dumas, S.: Periodic solutions in Hamiltonian systems, averaging, and the Lunar problem. SIAM J. Appl. Dyn. Syst. 7(2), 311–340 (2008). https://doi.org/10.1137/070696453

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vidal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We will present the expressions of the partial derivatives associated with the disturbed function \(H_1\) in (3.6), in terms of Poincaré-Delaunay variables (3.5). We use the Mathematica processor to get them.

$$\begin{aligned} \frac{\partial {\mathcal {H}}_1}{\partial P_1}= & {} -\delta _1+\delta _2 \frac{C}{4P_1^7}\left( -16 P_1^2+\frac{4 P_1 Q_2 \sin (Q_1) \left( 5 \left( P_2^2+Q_2^2\right) -18 P_1\right) }{\sqrt{4 P_1-P_2^2-Q_2^2}}\right. \\&+5 (P_2-Q_2) (P_2+Q_2) \cos (2 Q_1) \left( 3 \left( P_2^2+Q_2^2\right) -10 P_1\right) \\&+4 P_2 \cos (Q_1) \left( 5 Q_2 \sin (Q_1) \left( 3 \left( P_2^2+Q_2^2\right) -10 P_1\right) +\frac{P_1 \left( 5 \left( P_2^2+Q_2^2\right) -18 P_1\right) }{\sqrt{4 P_1-P_2^2-Q_2^2}}\right) \\&-10 P_1 \left( P_2^2+Q_2^2\right) +3 \left( P_2^2+Q_2^2\right) ^2),\\ \frac{\partial {\mathcal {H}}_1}{\partial P_2}= & {} \delta _1 P_2+\delta _2\frac{C}{8P_1^6}(-10 Q_2 \sin (2 Q_1) \left( -4 P_1+3 P_2^2+Q_2^2\right) \\&-\frac{8 P_1 P_2 Q_2 \sin (Q_1)}{\sqrt{4 P_1-P_2^2-Q_2^2}}\\&+\frac{8 P_1 \cos (Q_1) \left( 4 P_1-2 P_2^2-Q_2^2\right) }{\sqrt{4 P_1-P_2^2-Q_2^2}}-20 P_2 \left( P_2^2-2 P_1\right) \cos (2 Q_1)\\&-4 P_2 \left( -2 P_1+P_2^2+Q_2^2\right) ),\\ \frac{\partial {\mathcal {H}}_1}{\partial P_3}= & {} \delta _1 P_3,\\ \frac{\partial {\mathcal {H}}_1}{\partial Q_1}= & {} \delta _2 \frac{C}{2P_1^6}(Q_2 \cos (Q_1)-P_2 \sin (Q_1)) \left( 2 P_1 \sqrt{4 P_1-P_2^2-Q_2^2}\right. \\&\left. -5 \left( -4 P_1+P_2^2+Q_2^2\right) (P_2 \cos (Q_1)+Q_2 \sin (Q_1))\right) ,\\ \frac{\partial {\mathcal {H}}_1}{\partial Q_2}= & {} \delta _1 Q_2+\delta _2\frac{C}{8P_1^6}\left( -10 P_2 \sin (2 Q_1) \left( -4 P_1+P_2^2+3 Q_2^2\right) \right. \\&-\frac{8 P_1 \sin (Q_1) \left( -4 P_1+P_2^2+2 Q_2^2\right) }{\sqrt{4 P_1-P_2^2-Q_2^2}}\\&\left. -\frac{8 P_1 P_2 Q_2 \cos (Q_1)}{\sqrt{4 P_1-P_2^2-Q_2^2}}-4 Q_2 \left( -2 P_1+P_2^2+Q_2^2\right) +20 Q_2 \left( Q_2^2-2 P_1\right) \cos (2 Q_1)\right) \\ \frac{\partial {\mathcal {H}}_1}{\partial Q_3}= & {} \delta _1 Q_3. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascencio, M., Vidal, C. Symmetric Periodic Solutions for the Spatial Maxwell Restricted \(N+1\)-Problem with Manev Potential. Qual. Theory Dyn. Syst. 20, 24 (2021). https://doi.org/10.1007/s12346-021-00462-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00462-0

Keywords

Mathematics Subject Classification

Navigation