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Abstract

We consider games of transferable utility, those that deal with partial cooperation situations, made
up of coalition systems, in which every unit coalition is feasible and every coalition of players can
be expressed as a disjoint union of maximal feasible coalitions. These systems are named partition
systems and cause restricted games. To sum up, we study feasible coalition systems defined by a
partial order designed for a set of players and we analyze the characteristics of a feasible coalition
system developed from a family of convex sets.
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1 Partial cooperation

A system of feasible cooperations is defined by (N,F ), F ⊆ 2N , that proves the following

axiom:

(P1) ∅ ∈ F , and the group {i} ∈ F ∀ i ∈ N.

Considering the given explanation, it results that any coalition S ⊆ N can be

expressed by a disjoint union of feasible coalitions, as

S =
⋃

a∈S

{a}.

However, this partition of S for feasible coalitions should not be unique. In general,

we will denote PF (S ) the set made up of partitions of S ⊆ N in nonempty feasible
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coalitions. Obviously PF (∅) = {∅}. The previous reasoning gives sense to and makes

consistent the idea of a restricted cooperation game: Define the triple (N,F , v), in which

(N,F ) is a feasible coalition system and (N, v) a transferable utility game. Then the

couple (N, vF ) in which

vF : 2N R, vF (S ) = max















∑

i

v(Ti) | {Ti} ∈ PF (S )















.

is termed a game with restricted cooperation by the feasible coalition system (N,F ).

The supplied explanation for game of restricted cooperation by a system of feasible

coalitions is for every coalition of players, an extension of the one by Faigle (1989)

concerning games with restricted cooperations and by Bergantiños, Carreras and

Garcı́a–Jurado (1993) when using communication graphs to show incompatibility

among some of the players. Indeed, it can be shown that vF (S ) ≥
∑

i∈S v({i}). Defined

this way, the game is always superadditive.

Let (N,F ) be a system of feasible coalitions. Let S ⊆ N. It is said that T is F –

component of S if it is proved that T ∈ F and T ′ ∈ F does not exist, as T ⊂ T ′ ⊆ S .

That is to say, the S ⊆ N F –components are the maximal feasible coalitions included

in S and, for any S ⊆ N, the F –components of S are a collection {Tk}k ⊂ 2S such that

S =
⋃

k

Tk

But, the F –components of S ⊆ N are not necessarily a partition of S as its intersection

can be nonempty.

It can be proved that if we consider (N,F , v), where (N,F ) is a feasible coalition

system, (N, v) a superadditive game and, for each coalition S ⊆ N, the F –components

of S are a partition of itself, then the restricted cooperation game (N, vF ) verifies

vF (S ) =
∑

k

v(Tk),

where {Tk}k ∈ PF , the S partition for its maximal feasible coalitions (F –components of

S ).

Therefore, if the F –components of any coalition are a partition of itself, and the

game (N, v) is superadditive, then the restricted game by the system of feasible coalitions

is determined by

vF (S ) =
∑

k

v(Tk),

in which {Tk}k is the S partition for maximal feasible coalitions. As the previous

expression requires that maximal feasible coalitions must be disjointed, a new definition

for a concrete feasible coalitions system has to be looked for. It will be named a partition

system .
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A partition system is the couple (N,F ), F ⊆ 2N that verifies the following axioms:

(P1) ∅ ∈ F , {i} ∈ F ∀ i ∈ N.

(P2) ∀ S ⊆ N, the S maximal subsets in F (F –components of S ) are a partition of S ,

denoted by

CF (S ) = {S 1, . . . , S k}.

Evidently, a partition system is a feasible coalitions system, so, the F elements will

not change their name.

Example 1 Let N = {1, 2, . . . , n}, a natural number n, and considering the collection

Ln made of all the sets such as [i, j] = {i, i + 1, . . . , j − 1, j} for 1 ≤ i ≤ j ≤ n. This

model represents a one-dimensional political election situation and the couple (N,Ln)

is a partition system.

Example 2 A communication situation is the triple (N,G, v), in which (N, v) is a game

and G = (N, E(N)) is a graph. This idea was first developed by Myerson (1977), and

researched by Owen (1986) and Borm, Nouweland and Tijs (1992, 1993). It is easy to

see that the couple (N,F ), in which

F = {S ⊆ N | (S , E(S )) is a connected subgraph of G},

is a partition system. We must point out that the opposite is not always true, because

every G graph is a collection of pairs {i, j}, and as a result, there must be feasible

collections made up of two elements, but this might not happen.

The previous definitions come from an extension of communication situation and

communication graph-restricted game, developed by Myerson (1977) and Owen (1986).

The following theorem shows a characterization of the concept of partition systems.

Theorem 1 A feasible coalitions system (N,F ), F ⊆ 2N is a partition system if and

only if

∀A ∈ F , B ∈ F , con A ∩ B , ∅ =⇒ A ∪ B ∈ F .

Proof. (⇐) Considering that the F -components of A ⊆ N form a recover, it is

only necessary to prove that every pair of F –components of A are disjointed. Let Ti,

T j (i , j) maximal feasible coalitions of A. If Ti∩T j , ∅ ,it would mean, hypothesizing,

Ti ∪ T j ∈ F being Ti ∪ T j ⊂ A. This contradicts that Ti and T j are maximal feasible

coalitions of A.

(⇒) Let A ∈ F , B ∈ F with A ∩ B , ∅. If A ∪ B < F , then

A ∪ B =
⋃

k

Tk,

where {Tk} is the partition of A ∪ B for maximal sets. As A and B are feasible coalitions

contained in A ∪ B, thus A ⊆ T j, B ⊆ Tp for every j and p. If j , p, then T j ∩ Tp = ∅
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and, so, A∩B = ∅ against the hypothesis; then A∪B ∈ F . If j = p then A ⊆ T j ⊆ A ∪ B

and B ⊆ T j ⊆ A ∪ B, implies A ∪ B = T j ∈ F . ¤

2 Partially ordered set restricted games

The aim of this section is to study a feasible coalition system defined by a partial order

for all players. From this moment only posets P = (N,≤) will be considered and the

feasible coalition system characteristics developed from the family of convex sets will

be analyzed.

Let P = (N,≤) a poset. It is said that A ⊆ N is convex in P if it is proved that

a ∈ A, b ∈ A and a ≤ b =⇒ [a, b] ⊆ A.

If P = (N,≤) is a poset, we are interested in obtaining P∗ = (N,≤), the dual of P,

with

x ≤ y en P∗ ⇐⇒ y ≤ x en P.

It can be proved that Co(P) ' Co(P∗), ∀ P (Birkoff and Bennett, 1985).The family of

convex sets in P will be denoted

Co(P) = {S ⊆ N | S is convex in P}.

This characterization implies, ∀ i ∈ N, {i} ∈ Co(P) so the couple (N,Co(P)) is a

feasible coalitions system. Then, given a game (N, v), if there is an order relation among

the players, it makes sense to take into consideration the triple (N,Co(P), v) and the

appropriate partial cooperation game,

vCo(P) | 2N −→ R, vCo(P)(S ) = max















∑

i

v(Ti) | {Ti} ∈ PCo(P)(S )















,

where PCo(P)(S ) is the family of partitions from the coalition S in convex sets in P.

It is easy to prove that A, B ∈ Co(P), that A ∩ B ∈ Co(P), impliying (N,Co(P)) a

closure space. Also, Edelman and Jamison (1985), Birkoff and Bennett (1985) think that

(N,Co(P)) proves the Minkowski–Krein–Milman condition, and, therefore an atomic

convex geometry, named order convex in N.

As (N,Co(P)) is a feasible coalition system, every subset in N can be expressed

as a union of it maximal convex sets. In this particular case, the maximal convex

definition of S ⊆ N in P is equivalent to the one by Tijs (1993), which is due to the

two (N,Co(P)) being a convex geometry: Let (N,Co(P)) be a feasible coalition system

and let S ⊆ N. If T ∈ Co(P) and T ⊆ N, then T is maximal convex S in P if and only if,

∀i ∈ S \ T, T ∪ {i} < Co(P).

Notice that this characterization for maximal convex is certain in all convex

geometry, and, in general, the feasible coalition system (N,Co(P) is not a partition

system.
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Example 2 Let (N,≤) be a poset, whose Hasse diagram is shown in Figure 1,

•

•

•

••¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

4

2

1

35

Figure 1

• • • • • •

• • • • • • • • • • • • • •

3 4 3 3 3 4

1 2 1
2 4

1
2 4 1 2 3 4

1 2

A
A
A L

L
L

¯
¯
¯

L
L

L

•

• • • •

• • • • • •

• • • •

•

N

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

{1} {2} {3} {4}

∅Q
Q

Q
Q

Q
Q

Q
QQ

A
A

A
A

A
A

¢
¢
¢
¢
¢
¢

´
´

´
´

´
´

´
´́

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

HHHHHHHHHHHH

¡
¡

¡
¡

¡
¡

©©©©©©©©©©©©

HHHHHHHHHHHH

©©©©©©©©©©©©

HHHHHHHHHHHH

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

©©©©©©©©©©©©

©©©©©©©©©©©©

¡
¡

¡
¡

¡
¡

HHHHHHHHHHHH

¡
¡

¡
¡

¡
¡

HHHHHHHHHHHH

HHHHHHHHHHHH

@
@

@
@

@
@

´
´

´
´

´
´

´
´́

¢
¢
¢
¢
¢
¢

A
A

A
A

A
A

Q
Q

Q
Q

Q
Q

Q
QQ

Figure 2: (Co(P),⊆) ' (24
,⊆)
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The couple (N,Co(P)) is not a partition system, applying Theorem 1, because {1, 3} ∈

Co(P), {3, 4} ∈ Co(P), the intesection is not empty, however, {1, 3} ∪ {3, 4} < Co(P) due

to 1 ≤ 4 y [1, 4] * {1, 3, 4}.

Let P = (N,≤) be a poset whose range or length l(P) might equal 1 or be less than 1.

That is to say:

l(P) = max{l(C) | C is a chain in P and l(C) = |C| − 1} ≤ 1.

Then (N,Co(P)) is a partition convex geometry. As every subset in N is convex, either

due to being an atom or a chain of two elements from N, it implies that Co(P) ' 2N . For

example, in Figure 2, Co(P) ' 24. If l(P) ≤ 1 and if it is considered a partition system

(or partition convex geometry) restricted Co(P)–game linked to the three (N,Co(P), v),

it verifies that vCo(P)(S ) = v(S ), ∀S ∈ 2N and, therefore restricted game and original

game are the same.

It has been proved that if l(P) ≥ 2, the atomic convex geometry (N,Co(P)) is not

necessarily a partition system . This is the reason why only partially ordered sets with

l(P) ≥ 2 are taken into consideration, and we search for conditions to set (N,Co(P)) as

a partition system. We will introduce the concept of completely coherent ordered sets as

given by Birkoff and Bennett (1985).

A poset P = (N,≤) is coherent if it is connected and no maximal element from P

covers any minimal element from P.

For example, the poset in example 3 (Figure 1) is coherent. Other possible situations

are considered below:
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A poset P, with l(P) ≥ 2, is completely coherent if any subposet infered by P, P′

with l(P′) ≥ 2, is coherent. The following figures illustrate this concept. Figure 4 shows

diagrams of coherent posets that are not completely coherent. On the other hand, Figure

5, shows examples of completely coherent posets.
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Notice that completely coherent posets in Figure 5, except the first of them, verify

that P \ ex(P) is a chain. This property will be very important to prove that the cou-

ple (N,Co(P)) is a partition system.

Theorem 2 Let P = (N,≤) be a completely coherent finite poset, as P\ex(P) is a chain C.

Then, every maximal element from P covers the maximum in chain C and the minimal

element from C covers every minimal element from P.

Proof. If P is coherent, it is connected and its maximal elements do not cover any

minimal. Therefore, if x is maximal, it follows that y ∈ P is such that x Â y in which

y < ex(P) because set ex(P) is the union of maximal and minimal elements. Then, y ∈ C

/ y ≤ maxC exists.

• •

•
.
.
.

•

•

x

y

maxC

x′
@

@
@

@
@

@
@

If y , maxC, as maxC is not maximal in P, there is

x′ Â maxC. The induced subposet P′, made up of the

elements {y,maxC, x, x′} verifies that l(P′) = 2 and is not

coherent, in opposition to the hypothesis. Consequently,

y = maxC.

The reasoning for minimal elements is equivalent to the one above. ¤
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The following theorem is the main result from this research. It establishes alternative

characterization for the two (N,Co(P)) to be a partition system.

Theorem 3 Let P = (N,≤) be a finite poset. The couple (N,Co(P)) is a partition system

if and only if P is completely coherent and P \ ex(P) = C is a chain.

Proof. (⇒) Consider that (N,Co(P)) is a partition system. We must prove that P is

completely coherent and P \ ex(P) = C.

If P \ ex(P) , C, there are a, b ∈ P \ ex(P) so that {a, b} is an antichain. As

{a, b} * ex(P), consider the sets

m(a) = {m ∈ P | m ≺ a}, M(a) = {m′ ∈ P | a ≺ m′},

and, analagously, m(b) and M(b). Obviously, these are not empty sets, and it is easy to

notice that m(a) ∩ M(b) = m(b) ∩ M(a) = ∅. However, m(a) ∩ m(b) and M(a) ∩ M(b) ,

these intersections cannot be empty. So, these are the alternatives:

(1) m(a) ∩ m(b) , ∅

(2) M(a) ∩ M(b) , ∅

(3) m(a) ∩ m(b) = M(a) ∩ M(b) = ∅

Using the duality Co(P) ' Co(P∗), we only need to pay attention to (1) and (3).

(1) Let m ∈ m(a) ∩ m(b), m′ ∈ M(a). If b £ m′ (Figure 6), the set {m, b,m′} < Co(P)

and their maximal convexes {{b,m′}, {m, b}} are not its partition. If b ≤ m′ (Figure 7),

{m, a,m′} < Co(P) and their maximal convexes {{a,m′}, {m, a}} are also not its partition.
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Figure 6 Figure 7

(3) Suppose that m(a)∩m(b) = M(a)∩M(b) = ∅ and let m ∈ m(a) and m′ ∈ M(a). If

there is no connection between b and elements m, m′, then {m, b,m′} < Co(P) and their

maximal convexes{{b,m′}, {m, b}} are not its partition (Figure 8). If there was connection

it would be because, m ≤ b, b ≤ m′, one or both of them. In every situation, m < m(b)

and m′ < M(b) such that m(a) ∩ m(b) = M(a) ∩ M(b) = ∅. In all situations, we cannot

find convex sets in which their maximal convexes are not a partition. Indeed, if m ≤ b

there is a b1 such that m ≤ b1 ≤ b (Figure 9) and, for {m, a, b} < Co(P) their maximal

convexes {{m, a}, {a, b}} are not its partition. If b ≤ m′ the reasoning is equivalent.
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Thus, we have proved that if P \ ex(P) , C then the hypothesis is not satisfied.

Suppose that P is not completely coherent. Then, there is an inducted subset P′, with

l(P′) ≥ 2 that is not coherent, therefore P′ is not connected nor does any maximal

element from P′ cover any minimal element from P′.

If P′ is not connected, there are at least two connected components C1, C2 and all

of them have to include a chain with length equal or bigger than 2. Suppose l(C1) ≥ 2.

When we consider the first and last maximal chain C1 element, indicated by {p, u},

together with any a ∈ C2, there is for set {p, u, a} the situation is analogue to the subposet

in Figure 8, so there is a contradiction.

If P′ is connected but any maximal element covers any minimal element, there are m

and m′ (minimal and maximal from P′) such that m ≺ m′. Nevertheless, that m′ covers

m in the subposet P′ does not imply the same in P. So, there are two possibilities:

(1) m ≺ m′ in P ({m,m′} ∈ Co(P)).

(2) m ⊀ m′ in P ({m,m′} < Co(P)).

(1), we consider the set {p, u,m,m′} in which p and u are the first and the last

elements included in a subposet maximal chain P′ (l(P′) ≥ 2). As p and u are extreme

elements in P′, the three situations shown in Figures 10, 11 and 12 arise. There,

{p, u,m,m′} < Co(P) and its maximal convexes are not its partition. (Notice there is

an unknown connection drawn between p and m′, as well as between m and u).
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In (2), if m ⊀ m′ there is p1 ∈ P \ P′ such as m < p1 < m′. Let p and u be the first

and the last elements from a subposet maximal chain P′. Then, there is u1 ∈ P′ such

as p < u1 < u (l(P′) ≥ 2). Evidently it cannot be u = m′ and p = m, because then

m ⊀ m′ in P′. Therefore, we must take into consideration the situations in which u , m′

and p , m. Because of the duality, it is enough to study one of them. If u , m′, the

situations where it originates (drawn in Figures 13, 14 and 15) are due to {u1, p1} being

an antichain or not.
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Figure 13 Figure 14 Figure 15

If {u1, p1} is an antichain, there is a contradicion due to P \ ex(P) , C. If u1 < p1

or p1 < u1, we consider the sets {u, u1,m
′} < Co(P), {u, p1,m

′} < Co(P). In both cases,

their maximal convexes are not their partition.

(⇐) Notice that if P = (N,≤) is a completely coherent finite poset, such that P\ex(P)

is a chain C, then A ∈ Co(P), B ∈ Co(P) and A∩B , ∅ imply that A∪B ∈ Co(P). The set

A∪B is convex if given a ∈ A∪B, b ∈ A∪B with a ≤ b, then [a, b] ⊆ A∪B. The set A∪B

is a disjoint union of A \B, A∩B and B \A; so, among the different possible alternatives

for a and b, we only need to analyze a couple of them: a ∈ A \ B and b ∈ B \ A, or

a ∈ B \ A and b ∈ A \ B. Furthermore, using the duality (Co(P) ' Co(P∗)), it is enough

to analyze only one of the possibilities. Consequently, let a ∈ A\B, b ∈ B\A with a < b.

It must be proved that [a, b] ⊆ A ∪ B and, by hypothesis, A ∩ B , ∅. If there is an

element d ∈ A ∩ B such that d ∈ [a, b], then:

[a, b] = [a, d] ∪ [d, b] ⊆ A ∪ B,

as the intervals of P are always chains (P \ ex(P) = C), {a, d} ⊆ A, {d, b} ⊆ B and

A, B ∈ Co(P).

In the case that any d ∈ A ∩ B is not included in the interval [a, b], the are four

possible alternatives: 1) d < a, 2) b < d, 3) {a, d} is an antichain and 4) {b, d} is an

antichain.

We are going to analyze:

(1) If d < a < b, then [d, b] ⊆ B. Therefore a ∈ B, instead of being a ∈ A \ B.

(2) If a < b < d, then [a, d] ⊆ A. Therefore, b ∈ A which contradicts b ∈ B \ A.
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(3) If {a, d} is an antichain, then a and d are minimal elements (a is not maximal due to

a < b and the only possible antichains in P are made of maximal elements from P or of

minimal elements).

•

• •

.

.

.

•

b

a

min C

d¢
¢
¢¢

A
A

AA

Theorem 2 implies that minimal element from chain C, min C

covers a and d. Then d ≺ min C ≤ b and [d, b] ⊆ B as B is

convex and {d, b} ⊆ B. Therefore,

[a, b] = {a} ∪ [min C, b] ⊆ {a} ∪ [d, b] ⊆ A ∪ B.

•

•

•
.
.
.

•b

a

maxC

d

¡
¡

¡¡
(4) Using an analogous reasoning, if {b, d} is an antichain, both

are maximals and it is deduced that d Â maxC ≥ a. Then,

[a, d] ⊆ A y

[a, b] = [a,maxC] ∪ {b} ⊆ A ∪ B.

¤

Obviously, the results above have a theoretical interest. The knowledge of convex

sets, and particulary those structures that lead to partition systems, have a practical

interest, among other possibilities, in order to estimate power indexes —both Banzhaf’s

and Shapley’s— in simple weighted voting games and in double-triple majority games,

in which cooperation is restricted to a feasible coalition set. This application is discussed

in more detail by Bilbao, Jiménez, López and Fernández (2000).
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Resum

Considerem jocs d’utilitat transferible que tracten amb situacions de cooperació parcial constituı̈des
per sistemes de coalicions, en els que tota coalició unitària és factible i tota coalició de jugadors es pot
expressar com una unió disjunta de coalicions factibles maximals. Aquests sistemes reben el nom de
sistemes de partició i donen lloc a jocs restringits. En particular, estudiem sistemes de coalició definits
per un ordre parcial establert en el conjunt dels jugadors i analitzem les caracterı́stiques de coalicions
factibles construı̈t a partir de la classe de conjunts convexos.
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