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A Quantum Duistermaat-Heckman formula?

A. lbort

Abstract. Some aspects of Duistermaat-Heckman formula in finite dimensions are reviewed. We espec-
ulate with some of its possible extensions to infinite dimensions. In particular we review the localization
principle and the geometry of loop spaces following Witten and Atiyah'’s insight.

¢Es posible una f 6rmula de Duistermaat-Heckamn cu  antica?

Resumen. En este trabajo se revisan algunos aspectos dartaufa de Duistermaat—Heckman en
dimenson finita. A continuadn especulamos sobre sus posibles extensiones a damenfhita. En
particular, revisaremos el principio de localizawiy la geometr de los espacios de lazos siguiendo las
ideas de Witten y Atiyah.

1. Introduction

The evaluation of oscillatory integrals of the following form (Fourier transform of the push-forward of the
measurely, with respect to the may)

16) = [ e duta) &)

whereM is a2n-dimensional orientable closed manifold adydis the measure defined by a volume form

v on M, is both a challenging and a deep problem with multiple applications. Among the various fields
where integrals like (1) appear, we can mention: Optics, Group theory, Statistical Mechanics, Quantum
Theory and Quantum Field Theory, etc.

One of the most simple ways to approach the evaluation of (1) is by means of the stationary phase
approximation, that consists in the computation of the first order in the perturbation expansiémofithe
previous integral. The “physical principle” on which the stationary phase approximation relies is that the
relevant contributions to the integral will be those in the vecinity of critical points of the fungtlmecause
of the cancellation due to destructive “interference” of contribution of terms far from them. Expanding the
exponentf around its critical points, we can compute the gaussian integrals coming from the quadratic
term in the expansion and obtain a reliable approximation to (1). More precisg¢lylif — R is a Morse
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A. Ibort

function, i.e., is a smooth function with nondegenerate critical pointsfd denotes the finite set of
critical points off, it is well-known that we arrive to the following formula fd¢) [10],

I(t) =" > c(p)e™ P o), )
peC(f)

where
£mSANS (p) /4

olp) = \/det Hess f(p)’

is a characteristic number of the critical painwith sgnf(p) = 2n—2l and2l = ind f(p) (see for instance
[10] and references therein).

The heuristic infinite dimensional analoge of the previous formula (2) has been used sistematically in
the computation of partition functions in Quantum Field theory and Statistical Mechanics, i.e., integrals of
the form (see for instance any primer on Quantum Field Theory [18]),

Z; = /Dwe‘s(‘p)‘f e, (3)

We will discuss later on the similarities and differences between (1) and the previous equation.

It was recognized long time ago that various semiclassical approximations to compute (3) gave the exact
result in some particular cases. The same phenomena actually happens with the computation of integral (1).
For certain functiong’, Hamiltonians defining & (1) action, the stationary phase approximation is exact.

The concrete realization of this fact constitutes what is called the Duistermaat-Heckman formula.

We will review in theses notes some of the fundamental facts concerning the Duistermaat-Heckman

formula and we will explore some aspects of its possible extensions to infinite dimensions.

2. On the finite-dimensional Duistermaat-Heckman formula

As we were pointing before, one of the main corollaries of the results obtained by Duistermaat and Heckman
[8], is the fact that in certain ocasions the stationary phase approximation is exact, i.e., the integral in the
l.h.s. of equation (2) is given exactly by the finite sum over the critical points of the function in the exponent
appearing on the r.h.s. of the same formula. This rather surprising fact, implies some sort of integrability
on the problem under study, that in fact is hidden in the geometry of the mandifadd the functiory.

Thus, let us assume thal/,w) is a closed symplectic manifold antl,, is the Liouville measure
defined by the symplectic volume form, = w™/n!. Let G be a compact Lie group acting o by
symplectic diffeomorphisms and the momentum map of such action. LBtdenote a maximal compact
torus onG and¢ an infinitesimal generator f, i.e., and element of its Lie algebta The Hamiltonian
function corresponding to the Killing vector field af defined by¢ is given by J. = (£, J), that for
genericT and¢, will be a Morse function onV/. Then the stationary phase approximation formula (2)
becomes exact and gives the celebrated Duistermaat-Heckman formula,

; 2m)" .
/ dp, () eZt<57J(x)>duw(x) = ( 7;) Z C(p)eZt<€"](p)>7 ()
M t
peC(J¢)

with
Z”ﬂ

C(p) - szl )\k’

where);, are the infinitesimal characters of the actiorifodbn7,,M, p € C(J¢). In other words, because
p is a critical point of.J, it is a critical point for the Hamiltonian vector fiel, defined byJ: and it is a
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Quantum Duistermaat-Heckman formula

fixed point for the action of” on A/. Then the action of" on M induces an action df on7), M, hence a
representation of the Lie algebtan the linear spac&, M. Besides we can choose a metric such that the
action is orthogonal. The linearizatioty. (p) of the vector fieldX at the poin can be identified with the
Hessian of/; atp and the eigenvalues of such matrix are precis¢iynes the numbers,, which coincide
also with the weights of the linear representatior.of

There are several presentation of the previous result putting the emphasis on the different ideas involved
on it. We shall mention the original proof by Duistermaat-Heckman [8], the approach by Atiyah-Bott [3] in
terms of equivariant cohomology, Berlieeal [5], Witten [21]. For the sake of completness we will sketch
here the most direct proof available in finite dimensions [11].

The proof we sketch here is based in the following result from equivariant cohomology.

Theorem 1 Let X; be the Hamiltonian vector field corresponding to &i1) hamiltonian action on\/
andD = d+ix, the equivariant derivative. The? = 0 on the space of invariant forms dd. Moreover
if 1 is an invariant nondegenerate form which in additioisclosed, them is d-exactinM° = M —C(J).

PROOF Let6 be a 1-form onM/° such that
ACXJ = 07 ZX]H =1 (5)
Such 1-form can be constructed explicitely as follows. ¢ be aS!-invariant metric onV/, then define

(Xy(x),v)

() = X, @

The 1-form6 is well-defined becaus& ;(x) # 0 for all z € M°. A routine computation shows thét
verifies (5). Letu now be a form such that

ﬁXJMZO

andD-closed, i.e.,
dp = —ix, j.

Let v be the form
v=0A1+do) " Ap,

where
(1+d9)‘1:1—d6+d9Ad9—~--,
thus,
dy:deA(lero)*lAu—e/\(lerG)*lAdu,
hence

ix,dv=dOA(1+d0) " Nix,pu+ (14+dO)~  Nix,pu=ix,u,
where we have used thé = —ix ,pandix,dd =0. W

As an immediate application of the previous result we obtain that the invariantfesmxp it(J — w)
is d-exact on)M°. Effectively,

Dy = iteV =) D(J — w) = ite™ ") (dJ —ix,w) = 0.

The top term of the fornu is obtained from the expansion,

ezt(wa) _ 6”"67““‘ _ eth <1 —itw 4+ ' wn) ,
n:
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if dimM = 2n. Thus using the previous result we conclude that there existgan 1)-form vy, _; on
MP? such that )
et W™ = dvgy,_q.

n!

We shall proceed now to compute the integral (4). Denoting@by= U,c ;. B<(p) the union of a family
of small balls of radiug around the critical points of, we have,

/ dﬂw(m)eith(;c):/ duweitJ-i-/ duweit‘]. (6)
M M—B. B

€

The integrand of the first term in the r.h.s. of previous equation is exact because of the discussion of the
paragraph before. The second term bounded is above by the quaftjts)>" for a given constant’. The
computation of the first term leads thus to

/ dluw eitJ = / dvan—1 :/ Vop—1-
M-B. M—B. 9(Be)

Then, the integral in (6) becomes,

/ duw(:c) eith(l’) = Z [/ d,LLw eitde +/ y2n_1] . (7)
M Be(p) 9Be(p)

PpEA(Je)

We can take the ball®.(p) small enough to be contained in a single chart and such that we can apply
Morse’ Lemma to the functiod aroundp. Thus there will exist local coordinates centereg atich that

2n

Jg( Z)\ .Z‘ —|—p]

and then (6) becomes,

/duw(a:)e”']f(m) = Z ei“&(p)/ e“zA"(P)(ﬁ“’?wd”xd"p—i-/ Von—1
M Bs(p) aBF(p)

p€I(Je)

= D e / it S N 0)@483)/2 g n,
R2n

Now, a routine computation gives the desired formuldl

3. Localization and equivariant cohomology

In the proof of DH formula we have introduced a new and crucial ingredient: the opératsrequivariant
differential. In fact, the computation before is a consequence of the analysis of equivariant cohomology
groups. We will not enter a detailed discussion of these aspects here, and we refer the reader to the paper
by Atiyah and Bott [3]. However we will describe the basic ingredients of the approach. The equivariant
cohomology ringH¢. (M) of the G-spaceM “computes” the cohomology of the quotient spat/G

for G a group acting on the manifold/. The equivariant cohomology rinf (M) is defined as the
ordinary cohomology ring of the homotopy quotidit;, = M x Eq/G where E¢ denotes the universal
principal G-bundle. A de Rham model for such cohomology ring is constructed using equivariant forms
[16]. ForG = S! they are given by invariant elementsQh(M ) [u], i.e., polynomials in the variablewith
coefficients smooth forms alf. Such complex is equipped with the equivariant differenfiak d + wix
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whereX is the vector field generating tt$# action onM/. The cohomology of such complex is isomorphic

with H$, (M). In [21] E. Witten discuss in detail equivariant integration, i.e., the extension of ordinary
integration of forms to equivariant forms. It also amounts to construct an adequate completion for the space
of equivariant forms. One possible way to proceed is to use the Bargmann-Fock quantization space [12].
We will define the integration of the polynomial part with respect to the measuté /2du A du. Such

integral (conveniently normalized) is called the equivariant integral in [21]). We will keep using the same
symbol for the integral of equivariant form. It is clear that

/DV:O.

Hence, if we change an equivariant form in an exact equivariant term of thef@rrthe integral will not
change. Thus if is an equivariant 1-form and and equivariantly closed form, then,

[ 1= [ e

becausg(1 — e*P%) = D(u A 6e*P?). Then, the r.h.s. of previous equation can be integrated to get,

/u _ zi/dmda exp (td6 + £(X, 0) — [ul>/2).
i

Thus, performing the gaussian integralwowe get,

1 t?
= — — — (X 2 .
/lt \/%/MMGXP (tdﬁ 2|< ! )

Then, the previous integral is determined by the last factor in the exponent. In the set(Wheéfedoes
not vanishes, then the quadratic exponential vanishes#s-Ct?) for some positive constaidt, and in
the limitt — oo, it vanishes. Then, taking the limit— oo, we get

/Mzzi:Zi

wherei labels the connected component of the zero séko?)), andZ; is the value of — oo limit of the
previous integral in an arbitrary small tubular neighborhood of this set. Thus, the integral of an equivariant
closed formy is localized in the zero set of the field generating the action.

4. A “quantum” Duistermaat-Heckman formula

As indicated in the introduction, the purpose of this paper is to contribute to the mounting evidence towards
the existence of a quantum version of Duistermaat-Heckman formula. What is the meaning of “quantum”
in this context? Duistermaat-Heckman formula (4) is “classical” in the sense that it computes the classical
partition functionZ,; of a system defined by the Hamiltoniahon the (finite dimensional) phase space
(M,w),

Zu = / dpe . ®
M2'n.

The quantum analogous of this situation is obtained when we compute the partition futigtidda quan-
tum system whose classical counterpart is given by a system on the phasébpack/ is the generator
of aU(1) symmetry group, i.e., a current. Hence, we are interested in an integral of the form,

ZJ:/ Dpu(y)e P17, 9)
L(M)
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In the previous formula, the integral is taken over the space of loodg and the measurBy; defining the
quantum system is not well defined. In fact, the partition function of a quantum theory with Hamil#@nian
is given by an expression of the form,

7 = /qupefz/hf pdq—Hdt ~ /Dq efi/hf Ldt. (10)
The measur®q can be defined precisely for Lagrangians of the form

|
L= Egiquqj - V(q),

then the Feynman-Kac formula,

TrePH — DyeJo 39isd'ddr o= [§ Var,
£(Q)

holds, for o
e~ I0 2960 T I DG — Gy

the Wiener measure with covariané®/d+? on the Riemannian manifold, g).

We must then be very careful when comparing expression (9) with a quantum path integral like (10)
because the measudg appearing in (9) is a Liouville measure whereas the measure appearing in the
computation of the quantum partition function is a Wiener measure obtained from a Riemannian metric.
The relation among both, the Wiener measure and the symplectic measure, is given by a generalized Radon-
Nikodyn derivative, that in the particular case of dealing with the Riemann measure and the symplectic
measure defined respectively by a Riemannian metitd a symplectic forrw, coincides with the Pfaffian
of w with respect tg, i.e., the square root of the linear operator obtained lowering indexeg aitt raising
them withw.

Moreover passing from formula (8) to formula (9) amounts to quantize the classical theory. Thus, a
quantum Duistermaat-Heckman formula is a situation where the stationary phase approximation for the
quantum partition functiotr ; would be exact.

There is abondant evidence that such situations occur, but of course there is not a general theory char-
acterizing for which quantum systems, i.e., for what measivesand for what symmetry groups, such
statement is true. M. Atiyah pointed out that the quantum Duistermaat-Heckman formula is true for
Witten’s supersymmetric Quantum Mechanics, the proof of such statement is given by a fresh interpre-
tation of Atiyah-Singer index theorem for Dirac’s operator [4]. E. Witten showed also that such quantum
Duistermaat-Heckman formula can be used in the computation of the partition function of Yang-Mills in
2D [21]. Other such guantum Duistermaat-Heckman formulas have been used in different contexts (see for
instance the quantization of coadjoint orbits by Alekseeal [1], [13]). In a series of papers and commu-
nications Niemi [17], Tirkkonen [19], Blau [7], etc., have extended the equivariant localization principle to
path integrals and showed some of its possible implications.

5. Duistermaat-Heckman formula and Dirac index theorem

We will review here the masterly exposition of M. Atiyah in [4] where following a suggestion by Witten, it
is shown that an adequate interpretation of the Duistermaat-Heckman in the infinite dimensional loop space
is equivalent to the index theorem for the Dirac operator (see also [6]).

To be more precise, let us consideRa dimensional Riemannian manifol@ and the loop space
L£(Q)={~:[0,1] = Q | v(0) = ~(1) }. We shall define the 2-forf2 on £(()) by the formula

1
D¢
Q'Y (&717 6’72) = / < d:/l ) 672> dtv
0 y(t)
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wherey € £(Q) andédv, € T, L(Q) = T'(v*TQ), a = 1,2, are two tangent vectors. The 2-fothis
presymplectic with characteristic distribution given by Jacobi fields. As it was discussed in the previous
section, the “Riemann measure” and the “Liouville measure” defined respectively by the the induced metric
(.,.y on L(Q) and the 2-form2 will differ by the Pfaffian ofQ2 which is given by the square root of the
determinant of the operatd?/dt.

The groupS! acts naturally orC(Q) by rotating the loops. The infinitesimal generator of such action
is given by the vector field'(y) = 4. The vector fieldl’ is Hamiltonian with HamiltonianZ(y) =

fo [|%(¢)]|?dt. The integral we would like to compute is then,

[ w2 = [ ) fae Dy = [ oy faa Dpeeo.
L@ £@Q dt £(Q) dt

As it always happens with path integrals some sort of regularization will be necessary. Thus, using
¢-function regularization of operator determinants [18], we obtain immediately for the determinant of the
operatorD /dt that

D _
det = (7) = det(I = T,) = TH(S™(Ty)) = Tr(S™(T3)),
whereT, denotes the parallel transport along the leopnd S* are the spin representations @f2n).
Thus, if D: ST — S~ denotes the Dirac operator (we assume the manibtd be spin), then it is well
known that the path integral representation of the indek @ given by

indD = dimker D — dimker Df = Tr(—1)Fe~47 4

= / Dy [TrS+(Ty)—TrS—(TW)]e—Em:/ dpg e B,
Q) £(Q)

A naive application of Duistermaat-Heckman formula will allow us to evaluate the r.h.s. of the previous
equation by summing the contributions of the exponent over the fixed points of the action. The fixed points
of the action ofS! are constant loops of. But the set of constant loops is naturally identified wigh
itself. Thus, the set of fixed points is not made of isolated points. This can be easily remedied by using the
appropriate extension of Duistermaat-Heckman formula (4) [8) i§ a function with connected critical
submanifoldsV;, C(J) = U;_; N;, J(V;) = J;, andv(N;) denotes the normal bundle £6; on M, the
rank of v(V;) will be given by2n — 2k;, the linearization of the vector fiel® ; on T'N; will be given
by diag(m1(N;), ..., mk,(N;)). Moreover the Chern class of the (complex) fibre bundl&;) will be

factorized as .
N)) =T+ aij).
j=1

Then, the generalization of Duistermaat-Heckman formula, eq. (4), is given by,

/ ”Jde—Z/ he (11)
, H 1 (@tm; (N;) — i)

- 1 1 aij 1
].1;[1 (tm;(N;) — aig) 11 (tmj(Nv:) (V)2 +) th TI5 my (V) -

In our particular case the normal spacedn £(Q) is given by nonconstant mags — 7,Q. Thus
the normal bundle(Q) can be decomposed as

vQ)=T1oTho---,
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with T}, the complexified tangent bundléQ with S! acting with rotation numbek. Thus the Chern class
¢(T}) can be factorized as

m

o(Tx) = [ [k + ) (k — o),

j=1
and the denominator in DH formula (11) becomes

m oo

ITTI6 -

j=1k=1

that using the same regularization than in the case of the Pfaffian, we obtain,

iB() ) TT /2
e e - )
/Q j]-:-[l sinh o /2
and we arrive to the formula

indD = /H /2 - A(Q),

sinh o /2

which is the index theorem for the Dirac operator.

If G is a compact Lie group acting @, then, there is an induced action®fG), the loop group of7,
on £(Q). If we denote by an element on the Lie algebga then¢: S — g will denote the elements on
the Lie algebraC(g) of £L(G). The groupG is the subgroup of constant loops©&fG). The action oiG on
L(Q) is symplectic with momentum maff given by

e = [ 1

0

D .
<;Q,v(t)> at, vgeg.
¢ 0
Thus we can ask about the evaluation of the integral

/ dua () e BEM+IT(M) (12)
£(Q)

A similar discussion to the previous one shows that the previous integral (12) leads to the equivariant index
theorem for the Dirac operat@? (the computation of the path integral can be repeated easily following the

ideas in [2]).

6. Some aspects of the geometry of loop spaces

The previous discussion seems a bit forced by the need to introduce a metric and the restriction on the di-
mension of the manifold). Everything is much more natural formulated directly on a symplectic manifold.

Let (M,w) be as usual a symplectic manifold. The space of l06f¥®) carries a natural symplectic
structuref? defined as follows:

o1
O, (51, 572) = / ey (671 (), 52(8))
0

wheredy, € T,L(M) =T(v*(TM)), a = 1,2, are tangent vectors #0(M ) aty € L(M).
In the particular case aff = T*@Q, we immediately see that

L(T*Q) = T"L(Q),
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moreover the canonical Liouville 1-forfly on 7@ lifts to the canonical 1-forn® onT*L(Q),

0, (#y) = / (00)+ oy (5 (0))

andd®e = Qq, whereQ) is the canonical symplectic form @fi*£(Q). Notice that for any closed 1-form

on £(Q) its graph will define a Lagrangian submanifold’6h£(Q). Similar considerations will stand for
arbitrary 1-forms orC (@), i.e., if 5 is a 1-form onZ(Q) then its graph will define a submanifold 6f £(Q)
whose characteristic distribution is given kyt 5. This is the construction in the previous paragraphs with
Atiyah’s construction for the 1-form,

1 (57) = / (4, 67) .

The generator of the canonical vector fi€ldy) = 4, is the action functional closed 1-fors given by,

Ay (07) = /O w(, dy)dt.

If the symplectic manifoldM is Floer, i.e.,(m(M),w) = 0, then the closed 1-formd is exact, and
A = dS, with S the action functional (further properties of the symplectic manif&{d/) in connection
with Arnold’s conjecture can be found in [14]).

The computation of the integral
[ duateso
L(M)

leads again to the index of the Dirac operatbconstructed out of a Riemannian metgion M compatible
with the symplectic formw.

Further discussion on path intgrals on the loop space of a symplectic manifold will be presented else-

where.
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