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A Quantum Duistermaat-Heckman formula?

A. Ibort

Abstract. Some aspects of Duistermaat-Heckman formula in finite dimensions are reviewed. We espec-
ulate with some of its possible extensions to infinite dimensions. In particular we review the localization
principle and the geometry of loop spaces following Witten and Atiyah’s insight.

¿Es posible una f órmula de Duistermaat-Heckamn cu ántica?

Resumen. En este trabajo se revisan algunos aspectos de la fórmula de Duistermaat–Heckman en
dimensíon finita. A continuacíon especulamos sobre sus posibles extensiones a dimensión infinita. En
particular, revisaremos el principio de localización y la geometŕıa de los espacios de lazos siguiendo las
ideas de Witten y Atiyah.

1. Introduction

The evaluation of oscillatory integrals of the following form (Fourier transform of the push-forward of the
measuredµ with respect to the mapf )

I(t) =
∫

M

eitf(x)dµ(x) (1)

whereM is a2n-dimensional orientable closed manifold anddµ is the measure defined by a volume form
ν on M , is both a challenging and a deep problem with multiple applications. Among the various fields
where integrals like (1) appear, we can mention: Optics, Group theory, Statistical Mechanics, Quantum
Theory and Quantum Field Theory, etc.

One of the most simple ways to approach the evaluation of (1) is by means of the stationary phase
approximation, that consists in the computation of the first order in the perturbation expansion int−1 of the
previous integral. The “physical principle” on which the stationary phase approximation relies is that the
relevant contributions to the integral will be those in the vecinity of critical points of the functionf because
of the cancellation due to destructive “interference” of contribution of terms far from them. Expanding the
exponentf around its critical points, we can compute the gaussian integrals coming from the quadratic
term in the expansion and obtain a reliable approximation to (1). More precisely, iff : M → R is a Morse
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function, i.e., is a smooth function with nondegenerate critical points andC(f) denotes the finite set of
critical points off , it is well-known that we arrive to the following formula forI(t) [10],

I(t) =
(2π)n

tn

∑

p∈C(f)

c(p)eitf(p) + O(t−n−1), (2)

where

c(p) =
eiπsgnf(p)/4

√
det Hessf(p)

,

is a characteristic number of the critical pointp, with sgnf(p) = 2n−2l and2l = indf(p) (see for instance
[10] and references therein).

The heuristic infinite dimensional analoge of the previous formula (2) has been used sistematically in
the computation of partition functions in Quantum Field theory and Statistical Mechanics, i.e., integrals of
the form (see for instance any primer on Quantum Field Theory [18]),

ZJ =
∫
Dϕe−S(ϕ)−∫

Jϕ. (3)

We will discuss later on the similarities and differences between (1) and the previous equation.
It was recognized long time ago that various semiclassical approximations to compute (3) gave the exact

result in some particular cases. The same phenomena actually happens with the computation of integral (1).
For certain functionsf , Hamiltonians defining aU(1) action, the stationary phase approximation is exact.
The concrete realization of this fact constitutes what is called the Duistermaat-Heckman formula.

We will review in theses notes some of the fundamental facts concerning the Duistermaat-Heckman
formula and we will explore some aspects of its possible extensions to infinite dimensions.

2. On the finite-dimensional Duistermaat-Heckman formula

As we were pointing before, one of the main corollaries of the results obtained by Duistermaat and Heckman
[8], is the fact that in certain ocasions the stationary phase approximation is exact, i.e., the integral in the
l.h.s. of equation (2) is given exactly by the finite sum over the critical points of the function in the exponent
appearing on the r.h.s. of the same formula. This rather surprising fact, implies some sort of integrability
on the problem under study, that in fact is hidden in the geometry of the manifoldM and the functionf .

Thus, let us assume that(M, ω) is a closed symplectic manifold anddµω is the Liouville measure
defined by the symplectic volume formνω = ωn/n!. Let G be a compact Lie group acting onM by
symplectic diffeomorphisms andJ the momentum map of such action. LetT denote a maximal compact
torus onG andξ an infinitesimal generator ofT , i.e., and element of its Lie algebrat. The Hamiltonian
function corresponding to the Killing vector field onM defined byξ is given byJξ = 〈ξ, J〉, that for
genericT andξ, will be a Morse function onM . Then the stationary phase approximation formula (2)
becomes exact and gives the celebrated Duistermaat-Heckman formula,

∫

M

dµω(x) eit〈ξ,J(x)〉dµω(x) =
(2π)n

tn

∑

p∈C(Jξ)

c(p)eit〈ξ,J(p)〉, (4)

with

c(p) =
in∏n

k=1 λk
,

whereλk are the infinitesimal characters of the action ofT on TpM , p ∈ C(Jξ). In other words, because
p is a critical point ofJξ, it is a critical point for the Hamiltonian vector fieldXξ defined byJξ and it is a
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fixed point for the action ofT onM . Then the action ofT onM induces an action ofT onTpM , hence a
representation of the Lie algebrat on the linear spaceTpM . Besides we can choose a metric such that the
action is orthogonal. The linearizationX ′

ξ(p) of the vector fieldXξ at the pointp can be identified with the
Hessian ofJξ atp and the eigenvalues of such matrix are preciselyi times the numbersλk, which coincide
also with the weights of the linear representation oft.

There are several presentation of the previous result putting the emphasis on the different ideas involved
on it. We shall mention the original proof by Duistermaat-Heckman [8], the approach by Atiyah-Bott [3] in
terms of equivariant cohomology, Berlineet al [5], Witten [21]. For the sake of completness we will sketch
here the most direct proof available in finite dimensions [11].

The proof we sketch here is based in the following result from equivariant cohomology.

Theorem 1 Let XJ be the Hamiltonian vector field corresponding to anU(1) hamiltonian action onM
andD = d+iXJ

the equivariant derivative. ThenD2 = 0 on the space of invariant forms onM . Moreover
if µ is an invariant nondegenerate form which in addition isD-closed, thenµ isd-exact inMo = M−C(J).

PROOF. Let θ be a 1-form onMo such that

LXJ = 0, iXJ θ = 1. (5)

Such 1-form can be constructed explicitely as follows. Letg be aS1-invariant metric onM , then define

θx(v) =
〈XJ(x), v〉
||XJ(x)||2 .

The 1-formθ is well-defined becauseXJ (x) 6= 0 for all x ∈ Mo. A routine computation shows thatθ
verifies (5). Letµ now be a form such that

LXJ
µ = 0

andD-closed, i.e.,
dµ = −iXJ µ.

Let ν be the form
ν = θ ∧ (1 + dθ)−1 ∧ µ,

where
(1 + dθ)−1 = 1− dθ + dθ ∧ dθ − · · · ,

thus,
dν = dθ ∧ (1 + dθ)−1 ∧ µ− θ ∧ (1 + dθ)−1 ∧ dµ,

hence
iXJ dν = dθ ∧ (1 + dθ)−1 ∧ iXJ µ + (1 + dθ)−1 ∧ iXJ µ = iXJ µ,

where we have used thatdµ = −iXJ
µ andiXJ

dθ = 0. ¥

As an immediate application of the previous result we obtain that the invariant formµ = exp it(J − ω)
is d-exact onMo. Effectively,

Dµ = iteit(J−ω)D(J − ω) = iteit(J−ω)(dJ − iXJ ω) = 0.

The top term of the formµ is obtained from the expansion,

eit(J−ω) = eitJe−itω = eitJ

(
1− itω + · · ·+ intn

n!
ωn

)
,
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if dimM = 2n. Thus using the previous result we conclude that there exists an(2n − 1)-form ν2n−1 on
Mo such that

eitJ 1
n!

ωn = dν2n−1.

We shall proceed now to compute the integral (4). Denoting byBε = ∪p∈Jξ
Bε(p) the union of a family

of small balls of radiusε around the critical points ofJ , we have,
∫

M

dµω(x)eitJξ(x) =
∫

M−Bε

dµωeitJ +
∫

Bε

dµωeitJ . (6)

The integrand of the first term in the r.h.s. of previous equation is exact because of the discussion of the
paragraph before. The second term bounded is above by the quantityC(ε/t)2n for a given constantC. The
computation of the first term leads thus to

∫

M−Bε

dµω eitJ =
∫

M−Bε

dν2n−1 =
∫

∂(Bε)

ν2n−1.

Then, the integral in (6) becomes,

∫

M

dµω(x) eitJξ(x) =
∑

p∈∂(Jξ)

[∫

Bε(p)

dµω eitJξ +
∫

∂Bε(p)

ν2n−1

]
. (7)

We can take the ballsBε(p) small enough to be contained in a single chart and such that we can apply
Morse’ Lemma to the functionJξ aroundp. Thus there will exist local coordinates centered atp such that

Jξ(x) = Jξ(p) +
1
2

2n∑

i=1

λi(p)(x2
j + p2

j ),

and then (6) becomes,

∫

M

dµω(x)eitJξ(x) =
∑

p∈∂(Jξ)

[
eitJξ(p)

∫

Bε(p)

eit
∑

λi(p)(x2
i +p2

i )/2 dnxdnp +
∫

∂Bε(p)

ν2n−1

]

=
∑

p

eiJξ(p)

∫

R2n

eit
∑

λi(p)(x2
i +p2

i )/2 dnxdnp.

Now, a routine computation gives the desired formula.¥

3. Localization and equivariant cohomology

In the proof of DH formula we have introduced a new and crucial ingredient: the operatorD, or equivariant
differential. In fact, the computation before is a consequence of the analysis of equivariant cohomology
groups. We will not enter a detailed discussion of these aspects here, and we refer the reader to the paper
by Atiyah and Bott [3]. However we will describe the basic ingredients of the approach. The equivariant
cohomology ringH∗

G(M) of the G-spaceM “computes” the cohomology of the quotient spaceM/G
for G a group acting on the manifoldM . The equivariant cohomology ringH∗

G(M) is defined as the
ordinary cohomology ring of the homotopy quotientMG = M × EG/G whereEG denotes the universal
principalG-bundle. A de Rham model for such cohomology ring is constructed using equivariant forms
[16]. ForG = S1 they are given by invariant elements onΩ∗(M)[u], i.e., polynomials in the variableu with
coefficients smooth forms onM . Such complex is equipped with the equivariant differentialD = d + uiX
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whereX is the vector field generating theS1 action onM . The cohomology of such complex is isomorphic
with H∗

S1(M). In [21] E. Witten discuss in detail equivariant integration, i.e., the extension of ordinary
integration of forms to equivariant forms. It also amounts to construct an adequate completion for the space
of equivariant forms. One possible way to proceed is to use the Bargmann-Fock quantization space [12].
We will define the integration of the polynomial part with respect to the measuree−|u|

2/2du ∧ dū. Such
integral (conveniently normalized) is called the equivariant integral in [21]). We will keep using the same
symbol for the integral of equivariant form. It is clear that

∫
Dν = 0.

Hence, if we change an equivariant form in an exact equivariant term of the formDθ, the integral will not
change. Thus ifθ is an equivariant 1-form andµ and equivariantly closed form, then,

∫
µ =

∫
µeitDθ,

becauseµ(1− eitDθ) = D(µ ∧ θeitDθ). Then, the r.h.s. of previous equation can be integrated to get,
∫

µ =
1
2π

∫
du ∧ dū exp

(
tdθ + t〈X, θ〉 − |u|2/2

)
.

Thus, performing the gaussian integral onu we get,
∫

µ =
1√
2π

∫

M

µ exp
(

tdθ − t2

2
|〈X, θ〉|2

)
.

Then, the previous integral is determined by the last factor in the exponent. In the set where〈X, θ〉 does
not vanishes, then the quadratic exponential vanishes asexp(−Ct2) for some positive constantC, and in
the limit t →∞, it vanishes. Then, taking the limitt →∞, we get

∫
µ =

∑

i

Zi

wherei labels the connected component of the zero set of〈X, θ〉, andZi is the value oft →∞ limit of the
previous integral in an arbitrary small tubular neighborhood of this set. Thus, the integral of an equivariant
closed formµ is localized in the zero set of the field generating the action.

4. A “quantum” Duistermaat-Heckman formula

As indicated in the introduction, the purpose of this paper is to contribute to the mounting evidence towards
the existence of a quantum version of Duistermaat-Heckman formula. What is the meaning of “quantum”
in this context? Duistermaat-Heckman formula (4) is “classical” in the sense that it computes the classical
partition functionZcl of a system defined by the HamiltonianJ on the (finite dimensional) phase space
(M, ω),

Zcl =
∫

M2n

dµωe−βJ . (8)

The quantum analogous of this situation is obtained when we compute the partition functionZJ of a quan-
tum system whose classical counterpart is given by a system on the phase spaceM andJ is the generator
of aU(1) symmetry group, i.e., a current. Hence, we are interested in an integral of the form,

ZJ =
∫

L(M)

Dµ(γ) e−β
∫

Jdt. (9)
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In the previous formula, the integral is taken over the space of loops onM and the measureDµ defining the
quantum system is not well defined. In fact, the partition function of a quantum theory with HamiltonianH
is given by an expression of the form,

Z =
∫
DqDp e−i/~

∫
pdq−Hdt ∼=

∫
Dq e−i/~

∫
Ldt. (10)

The measureDq can be defined precisely for Lagrangians of the form

L =
1
2
gij q̇

iq̇j − V (q),

then the Feynman-Kac formula,

Tr eβH =
∫

L(Q)

Dq e−
∫ β
0

1
2 gij q̇iq̇jdτe−

∫ β
0 V dτ ,

holds, for
e−

∫ β
0

1
2 gij q̇iq̇jdτDq = dµW

the Wiener measure with covarianced2/dt2 on the Riemannian manifold(Q, g).
We must then be very careful when comparing expression (9) with a quantum path integral like (10)

because the measuredµ appearing in (9) is a Liouville measure whereas the measure appearing in the
computation of the quantum partition function is a Wiener measure obtained from a Riemannian metric.
The relation among both, the Wiener measure and the symplectic measure, is given by a generalized Radon-
Nikodyn derivative, that in the particular case of dealing with the Riemann measure and the symplectic
measure defined respectively by a Riemannian metricg and a symplectic formω, coincides with the Pfaffian
of ω with respect tog, i.e., the square root of the linear operator obtained lowering indexes withg and raising
them withω.

Moreover passing from formula (8) to formula (9) amounts to quantize the classical theory. Thus, a
quantum Duistermaat-Heckman formula is a situation where the stationary phase approximation for the
quantum partition functionZJ would be exact.

There is abondant evidence that such situations occur, but of course there is not a general theory char-
acterizing for which quantum systems, i.e., for what measuresDµ and for what symmetry groups, such
statement is true. M. Atiyah pointed out that the quantum Duistermaat-Heckman formula is true for
Witten’s supersymmetric Quantum Mechanics, the proof of such statement is given by a fresh interpre-
tation of Atiyah-Singer index theorem for Dirac’s operator [4]. E. Witten showed also that such quantum
Duistermaat-Heckman formula can be used in the computation of the partition function of Yang-Mills in
2D [21]. Other such quantum Duistermaat-Heckman formulas have been used in different contexts (see for
instance the quantization of coadjoint orbits by Alekseevet al [1], [13]). In a series of papers and commu-
nications Niemi [17], Tirkkonen [19], Blau [7], etc., have extended the equivariant localization principle to
path integrals and showed some of its possible implications.

5. Duistermaat-Heckman formula and Dirac index theorem

We will review here the masterly exposition of M. Atiyah in [4] where following a suggestion by Witten, it
is shown that an adequate interpretation of the Duistermaat-Heckman in the infinite dimensional loop space
is equivalent to the index theorem for the Dirac operator (see also [6]).

To be more precise, let us consider a2n dimensional Riemannian manifoldQ and the loop space
L(Q) = { γ : [0, 1] → Q | γ(0) = γ(1) }. We shall define the 2-formΩ onL(Q) by the formula

Ωγ(δγ1, δγ2) =
∫ 1

0

〈
Dδγ1

dt
, δγ2

〉

γ(t)

dt,
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whereγ ∈ L(Q) andδγa ∈ TγL(Q) = Γ(γ∗TQ), a = 1, 2, are two tangent vectors. The 2-formΩ is
presymplectic with characteristic distribution given by Jacobi fields. As it was discussed in the previous
section, the “Riemann measure” and the “Liouville measure” defined respectively by the the induced metric
〈., .〉 on L(Q) and the 2-formΩ will differ by the Pfaffian ofΩ which is given by the square root of the
determinant of the operatorD/dt.

The groupS1 acts naturally onL(Q) by rotating the loops. The infinitesimal generator of such action
is given by the vector fieldΓ(γ) = γ̇. The vector fieldΓ is Hamiltonian with HamiltonianE(γ) =∫ 1

0
||γ̇(t)||2dt. The integral we would like to compute is then,

∫

L(Q)

dµΩ(γ) e−βE(γ) =
∫

L(Q)

dµW (γ)

√
det

D

dt
(γ) =

∫

L(Q)

Dγ

√
det

D

dt
(γ)e−βE(γ).

As it always happens with path integrals some sort of regularization will be necessary. Thus, using
ζ-function regularization of operator determinants [18], we obtain immediately for the determinant of the
operatorD/dt that

det
D

dt
(γ) = det(I − Tγ) = Tr(S+(Tγ))− Tr(S−(Tγ)),

whereTγ denotes the parallel transport along the loopγ andS± are the spin representations ofO(2n).
Thus, if D : S+ → S− denotes the Dirac operator (we assume the manifoldQ to be spin), then it is well
known that the path integral representation of the index ofD is given by

indD = dimkerD − dimkerD† = Tr(−1)F e−4π2∆

=
∫

L(Q)

Dγ [TrS+(Tγ)− TrS−(Tγ)]e−E(γ) =
∫

L(Q)

dµΩ e−E(γ).

A naive application of Duistermaat-Heckman formula will allow us to evaluate the r.h.s. of the previous
equation by summing the contributions of the exponent over the fixed points of the action. The fixed points
of the action ofS1 are constant loops onQ. But the set of constant loops is naturally identified withQ
itself. Thus, the set of fixed points is not made of isolated points. This can be easily remedied by using the
appropriate extension of Duistermaat-Heckman formula (4) [8]. IfJ is a function with connected critical
submanifoldsNi, C(J) = ∪s

i=1Ni, J(Ni) = Ji, andν(Ni) denotes the normal bundle toNi on M , the
rank of ν(Ni) will be given by2n − 2ki, the linearization of the vector fieldXJ on TNi will be given
by diag(m1(Ni), . . . , mki(Ni)). Moreover the Chern class of the (complex) fibre bundleν(Ni) will be
factorized as

c(ν(Ni)) =
ki∏

j=1

(1 + αij).

Then, the generalization of Duistermaat-Heckman formula, eq. (4), is given by,

∫

M

eitJdµω =
∑

i

∫

Ni

eitJieω

∏ki

j=1(itmj(Ni)− iαij)
, (11)

where

ki∏

j=1

1
(tmj(Ni)− αij)

=
∏(

1
tmj(Ni)

+
αij

(tmj(Ni))2
+ · · ·

)
=

1

tki
∏ki

j=1 mj(Ni)
+ · · · .

In our particular case the normal space toQ in L(Q) is given by nonconstant mapsS1 → TqQ. Thus
the normal bundleν(Q) can be decomposed as

ν(Q) = T1 ⊕ T2 ⊕ · · · ,
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with Tk the complexified tangent bundleTQ with S1 acting with rotation numberk. Thus the Chern class
c(Tk) can be factorized as

c(Tk) =
m∏

j=1

(k + αj)(k − αj),

and the denominator in DH formula (11) becomes

m∏

j=1

∞∏

k=1

(k2 − α2
j ),

that using the same regularization than in the case of the Pfaffian, we obtain,

∫

Q

eiE(q)eΩ(q)
m∏

j=1

αj/2
sinhαj/2

,

and we arrive to the formula

indD =
∫

Q

m∏

j=1

αj/2
sinhαj/2

= Â(Q),

which is the index theorem for the Dirac operator.

If G is a compact Lie group acting onQ, then, there is an induced action ofL(G), the loop group ofG,
onL(Q). If we denote byξ an element on the Lie algebrag, thenξ̂ : S1 → g will denote the elements on
the Lie algebraL(g) of L(G). The groupG is the subgroup of constant loops ofL(G). The action ofG on
L(Q) is symplectic with momentum mapJ given by

〈J (γ), ξ〉 =
∫ 1

0

〈
DξQ

dt
, ˙γ(t)

〉

γ(t)

dt, ∀ξ ∈ g.

Thus we can ask about the evaluation of the integral
∫

L(Q)

dµΩ(γ) e−β(E(γ)+Jξ(γ)). (12)

A similar discussion to the previous one shows that the previous integral (12) leads to the equivariant index
theorem for the Dirac operatorD (the computation of the path integral can be repeated easily following the
ideas in [2]).

6. Some aspects of the geometry of loop spaces

The previous discussion seems a bit forced by the need to introduce a metric and the restriction on the di-
mension of the manifoldQ. Everything is much more natural formulated directly on a symplectic manifold.

Let (M, ω) be as usual a symplectic manifold. The space of loopsL(M) carries a natural symplectic
structureΩ defined as follows:

Ωγ(δγ1, δγ2) =
∫ 1

0

ωγ(t)(δγ1(t), δγ2(t))dt,

whereδγa ∈ TγL(M) = Γ(γ∗(TM)), a = 1, 2, are tangent vectors toL(M) atγ ∈ L(M).
In the particular case ofM = T ∗Q, we immediately see that

L(T ∗Q) = T ∗L(Q),
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moreover the canonical Liouville 1-formθ0 onT ∗Q lifts to the canonical 1-formΘ onT ∗L(Q),

Θγ(δγ) =
∫ 1

0

(θ0)γ(t)(δγ(t))dt,

anddΘ = Ω0, whereΩ0 is the canonical symplectic form onT ∗L(Q). Notice that for any closed 1-formα
onL(Q) its graph will define a Lagrangian submanifold onT ∗L(Q). Similar considerations will stand for
arbitrary 1-forms onL(Q), i.e., ifβ is a 1-form onL(Q) then its graph will define a submanifold ofT ∗L(Q)
whose characteristic distribution is given bykerβ. This is the construction in the previous paragraphs with
Atiyah’s construction for the 1-formη,

ηγ(δγ) =
∫ 1

0

〈γ̇, δγ〉dt.

The generator of the canonical vector fieldΓ(γ) = γ̇, is the action functional closed 1-formA given by,

Aγ(δγ) =
∫ 1

0

ω(γ̇, δγ)dt.

If the symplectic manifoldM is Floer, i.e.,〈π2(M), ω〉 = 0, then the closed 1-formA is exact, and
A = dS, with S the action functional (further properties of the symplectic manifoldL(M) in connection
with Arnold’s conjecture can be found in [14]).

The computation of the integral ∫

L(M)

dµΩ(γ) e−S(γ),

leads again to the index of the Dirac operatorD constructed out of a Riemannian metricg onM compatible
with the symplectic formω.

Further discussion on path intgrals on the loop space of a symplectic manifold will be presented else-
where.
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