Skip to main content
Log in

Topological Classifications for a Class of 2-dimensional Quadratic Mappings and an Application to Iterative Roots

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Usually, it is difficult to find a topological relation among high dimensional mappings because of the complexity of existence conditions for conjugacies. In this paper, we investigate the conjugation for a class of 2-dimensional quadratic mappings via the theory of polynomial algebra. Two kinds of conjugate classifications are given. Finally, an application to the problem of iterative roots is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsedá, L., Llibre, J., Misurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, vol. 5, 2nd edn. World Scientific Publishing Co. Inc, River Edge (2000)

    Book  Google Scholar 

  2. Babbage, Ch.: Essay towards the calculus of functions. Philosoph. Transact. 389–423 (1815)

  3. Banks, J., Dragan, V., Jones, A.: Chaos: a Mathematical Introduction. Austral. Math. Soc. Lect. Ser. Cambridge Univ. Press, Cambridge (2003)

    Book  Google Scholar 

  4. Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York (1993)

    Book  Google Scholar 

  5. Bessa, M., Rocha, J.: On the fundamental regions of a fixed point free conservative Hénon map. Bull. Aust. Math. Soc. 77, 37–48 (2008)

    Article  MathSciNet  Google Scholar 

  6. Böttcher, L.E.: The principal laws of convergence of iterates and their application to analysis (in Russian). Izv. Kazan. Fiz.-Mat. Obshch. 14, 155–234 (1904)

    Google Scholar 

  7. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensional polynomideal. PhD thesis, Universität Innsbruck, Austria (1965)

  8. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  9. Cowen, C.C.: Analytic solutions of Böttcher’s functional equation in the unit disk. Aequationes Math. 24, 187–194 (1982)

    Article  MathSciNet  Google Scholar 

  10. Devaney, R.: Homoclinic bifurcations and the area-conserving Hénon mapping. J. Differ. Equ. 51, 254–266 (1984)

    Article  Google Scholar 

  11. Devaney, R., Nitecki, Z.: Shift automorphisms in the Hénon mapping. Commun. Math. Phys. 67, 137–146 (1979)

    Article  Google Scholar 

  12. Douady, A., Hubbard, J.H.: Etude Dynamique des Polynomes Complexes I, II. Publ. Math. Orsay, Paris (1984–1985)

  13. Fatou, P.: Sur lés équations fonctionnelles. Bulletin de la Société Mathématique de France 47, 161–271 (1919)

    Article  MathSciNet  Google Scholar 

  14. Gianni, P., Trager, B., Zacharias, G.: Gröbner bases and primary decomposition of polynomials. J. Symb. Comput. 6, 146–167 (1988)

    Article  Google Scholar 

  15. Hénon, M.: A two dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MathSciNet  Google Scholar 

  16. Isaacs, R.: Iterates of fractional order. Can. J. Math. 2, 409–416 (1950)

    Article  MathSciNet  Google Scholar 

  17. Jarczyk, W., Zhang, W.: Also set-valued functions do not like iterative roots. Elem. Math. 62, 73–80 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and Its Applications, vol. 32. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  19. Kuczma, M.: Functional Equation in a Single Variable. Monografie Mat. Polish Scientific Publishers, Warszawa (1968)

    MATH  Google Scholar 

  20. Leśniak, Z.: On fractional iterates of a Brouwer homeomorphism embeddable in a flow. J. Math. Anal. Appl. 366, 310–318 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lin Li, J., Jarczyk, W.J., Zhang, W.: Iterative roots of mappings with a unique set-value point. Publ. Math. Debrecen 75, 203–220 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Li, L., Zhang, W.: The question on characteristic endpoints for iterative roots of PM functions. J. Math. Anal. Appl. 458, 265–280 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, L., Jarczyk, W., Li, L., Zhang, W.: Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than \(2\). Nonlinear Anal. 75, 286–303 (2012)

    Article  MathSciNet  Google Scholar 

  24. Liu, L., Li, L., Zhang, W.: Open question on lower order iterative roots for PM functions. J. Differ. Equ. Appl. 24, 825–847 (2018)

    Article  MathSciNet  Google Scholar 

  25. de Melo, W., van Strien, S.: One-dimensional Dynamics, Ergeb. Math. Grenzgeb. Springer, Berlin (1993)

    Book  Google Scholar 

  26. Milnor, J., Thurston, W.: On Iterated Maps of the Interval, in Dynamical Sytems: Proceedings 1986–1987. Lecture Notes in Mathematics, vol. 1342. Springer, Berlin (1988)

    MATH  Google Scholar 

  27. Powierża, T.: Set-valued iterative square roots of bijections. Bull. Pol. Acad. Math. 47, 377–383 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Powierża, T.: Higher order set-valued iterative roots of bijections. Publ. Math. Debrecen 61, 315–324 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Rice, R.E., Schweizer, B., Sklar, A.: When is \(f(f(z))=az^2+bz+c?\). Am. Math. Mon. 87, 131–142 (1980)

    Article  Google Scholar 

  30. Ritt, J.: On the iteration of rational functions. Trans. Am. Math. Soc. 21(3), 348–356 (1920)

    Article  MathSciNet  Google Scholar 

  31. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston (2009)

    MATH  Google Scholar 

  32. Targonski, G.: Topics in Iteration Theory. Vandenhoeck and Ruprecht, Gȯttingen (1981)

    MATH  Google Scholar 

  33. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  34. Yu, Z., Yang, L., Zhang, W.: Discussion on polynomials having polynomial iterative roots. J. Symb. Comput. 47(10), 1154–1162 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zhang, J., Yang, L.: Discussion on iterative roots of piecewise monotone functions. Acta Math. Sin. 26, 398–412 (1983). (in Chinese)

    MATH  Google Scholar 

  36. Zhang, W.: PM functions, their characteristic intervals and iterative roots. Ann. Polon. Math. 65, 119–128 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and reviewers for their carefully checking and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Zhejiang Provincial Natural Science Foundation of China under Grant #LY18A010017, the National Science Foundation of China Grant #11671061, 11501475, 11771308, 11871041 and the Fundamental Research Funds for the Central Universities under grant 2682018CX63.

Appendix: Singular Worksheet for Case (i) of Lemma 1

Appendix: Singular Worksheet for Case (i) of Lemma 1

> LIB “primdec.lib”;

> ring r= (0),(c3,c4,c5,d3,d4,d5,b5,b4,b3,b2,b1,a5,a4,

a3,a2,a1,u),(dp);

> r;

> option(prot);

> short=0;

> // define polynomials in system APS

> poly f1 = a3*c3⌃2+a4*c3*d3+a5*d3⌃2;

> poly f2 = 2*a3*c3*c4+a4*c3*d4+a4*c4*d3+2*a5*d3*d4;

> poly f3 = 2*a3*c3*c5+a3*c4⌃2+a4*c3*d5+a4*c4*d4+a4*c5*d3

+2*a5*d3*d5 +a5*d4⌃2;

> poly f4 = 2*a3*c4*c5+a4*c4*d5+a4*c5*d4+2*a5*d4*d5;

> poly f5 = a3*c5⌃2+a4*c5*d5+a5*d5⌃2;

> poly f6 = 2*a3*b2*c3-a4*b1*c3+a4*b2*d3-2*a5*b1*d3;

> poly f7 = a1*a4*c3+2*a1*a5*d3-2*a2*a3*c3-a2*a4*d3

+2*a3*b2*c4-a4*b1*c4 +a4*b2*d4-2*a5*b1*d4;

> poly f8 = a1*a4*c4+2*a1*a5*d4-2*a2*a3*c4-a2*a4*d4

+2*a3*b2*c5-a4*b1*c5 +a4*b2*d5-2*a5*b1*d5;

> poly f9 = a1*a4*c5+2*a1*a5*d5-2*a2*a3*c5-a2*a4*d5;

> poly f10 = a1⌃3*b2⌃2*c3-2*a1⌃2*a2*b1*b2*c3

+a1⌃2*a2*b2⌃2*d3 +a1*a2⌃2*b1⌃2*c3

-2*a1*a2⌃2*b1*b2*d3+a2⌃3*b1⌃2*d3+a3*b2⌃2

-a4*b1*b2+a5*b1⌃2;

> poly f11 = a1⌃3*b2⌃2*c4-2*a1⌃2*a2*b1*b2*c4

+a1⌃2*a2*b2⌃2*d4 +a1*a2⌃2*b1⌃2*c4

-2*a1*a2⌃2*b1*b2*d4+a2⌃3*b1⌃2*d4+a1*a4*b2

-2*a1*a5*b1-2*a2*a3*b2+a2*a4*b1;

> poly f12 = a1⌃3*b2⌃2*c5-2*a1⌃2*a2*b1*b2*c5

+a1⌃2*a2*b2⌃2*d5+a1*a2⌃2*b1⌃2*c5-2*a1*a2⌃2*b1*b2*d5

+a2⌃3*b1⌃2*d5+a1⌃2*a5

-a1*a2*a4+a2⌃2*a3;

> poly f13 = b3*c3⌃2+b4*c3*d3+b5*d3⌃2;

> poly f14 = 2*b3*c3*c4+b4*c3*d4+b4*c4*d3+2*b5*d3*d4;

> poly f15 = 2*b3*c3*c5+b3*c4⌃2+b4*c3*d5+b4*c4*d4

+b4*c5*d3+2*b5*d3*d5 +b5*d4⌃2;

> poly f16 = 2*b3*c4*c5+b4*c4*d5+b4*c5*d4+2*b5*d4*d5;

> poly f17 = b3*c5⌃2+b4*c5*d5+b5*d5⌃2;

> poly f18 = b1*b4*c3+2*b1*b5*d3-2*b2*b3*c3-b2*b4*d3;

> poly f19 = a1*b4*c3+2*a1*b5*d3-2*a2*b3*c3-a2*b4*d3

-b1*b4*c4-2*b1*b5*d4 +2*b2*b3*c4+b2*b4*d4;

> poly f20 = a1*b4*c4+2*a1*b5*d4-2*a2*b3*c4-a2*b4*d4

-b1*b4*c5-2*b1*b5*d5 +2*b2*b3*c5+b2*b4*d5;

> poly f21 = a1*b4*c5+2*a1*b5*d5-2*a2*b3*c5-a2*b4*d5;

> poly f22 = a1⌃2*b1*b2⌃2*c3+a1⌃2*b2⌃3*d3

-2*a1*a2*b1⌃2*b2*c3-2*a1*a2*b1*b2⌃2*d3+a2⌃2*b1⌃3*c3

+a2⌃2*b1⌃2*b2*d3+b1⌃2*b5

-b1*b2*b4+b2⌃2*b3;

> poly f23 = a1⌃2*b1*b2⌃2*c4+a1⌃2*b2⌃3*d4

-2*a1*a2*b1⌃2*b2*c4-2*a1*a2*b1*b2⌃2*d4+a2⌃2*b1⌃3*c4

+a2⌃2*b1⌃2*b2*d4-2*a1*b1*b5

+a1*b2*b4+a2*b1*b4-2*a2*b2*b3;

> poly f24 = a1⌃2*b1*b2⌃2*c5+a1⌃2*b2⌃3*d5

-2*a1*a2*b1⌃2*b2*c5-2*a1*a2*b1*b2⌃2*d5+a2⌃2*b1⌃3*c5

+a2⌃2*b1⌃2*b2*d5+a1⌃2*b5

-a1*a2*b4+a2⌃2*b3;

> poly f25 = a3⌃2*c3+a3*b3*c4+b3⌃2*c5;

> poly f26 = 2*a3*a4*c3+a3*b4*c4+a4*b3*c4+2*b3*b4*c5;

> poly f27 = 2*a3*a5*c3+a3*b5*c4+a4⌃2*c3+a4*b4*c4

+a5*b3*c4+2*b3*b5*c5 +b4⌃2*c5;

> poly f28 = 2*a4*a5*c3+a4*b5*c4+a5*b4*c4+2*b4*b5*c5;

> poly f29 = a5⌃2*c3+a5*b5*c4+b5⌃2*c5;

> poly f30 = 2*a1*a3*c3+a1*b3*c4+a3*b1*c4+2*b1*b3*c5;

> poly f31 = 2*a1*a4*c3+a1*b4*c4+2*a2*a3*c3+a2*b3*c4

+a3*b2*c4+a4*b1*c4+2*b1*b4*c5+2*b2*b3*c5;

> poly f32 = 2*a1*a5*c3+a1*b5*c4+2*a2*a4*c3+a2*b4*c4

+a4*b2*c4+a5*b1*c4+2*b1*b5*c5+2*b2*b4*c5;

> poly f33 = 2*a2*a5*c3+a2*b5*c4+a5*b2*c4+2*b2*b5*c5;

> poly f34 = a1⌃3*b2*c3-a1⌃2*a2*b1*c3+a1⌃2*b1*b2*c4

-a1*a2*b1⌃2*c4+a1*b1⌃2*b2*c5-a2*b1⌃3*c5-a2*b3+a3*b2;

> poly f35=2*a1⌃2*a2*b2*c3+a1⌃2*b2⌃2*c4

-2*a1*a2⌃2*b1*c3+2*a1*b1*b2⌃2*c5

-a2⌃2*b1⌃2*c4-2*a2*b1⌃2*b2*c5-a2*b4+a4*b2;

> poly f36 = a1*a2⌃2*b2*c3+a1*a2*b2⌃2*c4+a1*b2⌃3*c5

-a2⌃3*b1*c3-a2⌃2*b1*b2*c4-a2*b1*b2⌃2*c5-a2*b5+a5*b2;

> poly f37 = a3⌃2*d3+a3*b3*d4+b3⌃2*d5;

> poly f38 = 2*a3*a4*d3+a3*b4*d4+a4*b3*d4+2*b3*b4*d5;

> poly f39 = 2*a3*a5*d3+a3*b5*d4+a4⌃2*d3+a4*b4*d4

+a5*b3*d4+2*b3*b5*d5 +b4⌃2*d5;

> poly f40 = 2*a4*a5*d3+a4*b5*d4+a5*b4*d4+2*b4*b5*d5;

> poly f41 = a5⌃2*d3+a5*b5*d4+b5⌃2*d5;

> poly f42 = 2*a1*a3*d3+a1*b3*d4+a3*b1*d4+2*b1*b3*d5;

> poly f43 = 2*a1*a4*d3+a1*b4*d4+2*a2*a3*d3+a2*b3*d4

+a3*b2*d4+a4*b1*d4+2*b1*b4*d5+2*b2*b3*d5;

> poly f44 = 2*a1*a5*d3+a1*b5*d4+2*a2*a4*d3+a2*b4*d4

+a4*b2*d4+a5*b1*d4+2*b1*b5*d5+2*b2*b4*d5;

> poly f45 = 2*a2*a5*d3+a2*b5*d4+a5*b2*d4+2*b2*b5*d5;

> poly f46 = a1⌃3*b2*d3-a1⌃2*a2*b1*d3+a1⌃2*b1*b2*d4

-a1*a2*b1⌃2*d4 +a1*b1⌃2*b2*d5-a2*b1⌃3*d5+a1*b3-a3*b1;

> poly f47 = 2*a1⌃2*a2*b2*d3+a1⌃2*b2⌃2*d4

-2*a1*a2⌃2*b1*d3+2*a1*b1*b2⌃2*d5

-a2⌃2*b1⌃2*d4-2*a2*b1⌃2*b2*d5+a1*b4-a4*b1;

> poly f48 = a1*a2⌃2*b2*d3+a1*a2*b2⌃2*d4+a1*b2⌃3*d5

-a2⌃3*b1*d3-a2⌃2*b1*b2*d4-a2*b1*b2⌃2*d5+a1*b5-a5*b1;

> ideal APS=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,

f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26,f27,

f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,

f40,f41,f42,f43,f44,f45,f46,f47,f48;

> // compute Gröbner basis of APS

> ideal G=slimgb(APS);

> // find the minimal irreducible decomposition for Gröbner basis G

> minAssGTZ(G);

> // define polynomials in system \({\widetilde{SPS}}_{1}\)

> g1 = a4⌃2-4*a5*a3;

> g2 = b1*a4-2*b2*a3+2*b3*a2-b4*a1;

> g3 = b3*a4-b4*a3;

> g4 = b4*a4-4*b5*a3;

> g5 = d5*a4+2*c5*a3;

> g6 = d4*a4+2*c4*a3;

> g7 = d3*a4+2*c3*a3;

> g8 = 2*b1*a5-b2*a4+b4*a2-2*b5*a1;

> g9 = b3*a5-b5*a3;

> g10 = b4*a5-b5*a4;

> g11 = 2*d5*a5+c5*a4;

> g12 = 2*d4*a5+c4*a4;

> g13 = 2*d3*a5+c3*a4;

> g14 = 2*d5*b2+2*c5*b1+d4*a2+c4*a1;

> g15 = d4*b2+c4*b1+2*d3*a2+2*c3*a1;

> g16 = 2*d5*b3+d4*a3;

> g17 = d4*b3+2*d3*a3;

> g18 = 2*c5*b3+c4*a3;

> g19 = c4*b3-d3*a4;

> g20 = b4⌃2-4*b5*b3;

> g21 = d5*b4-c4*a3;

> g22 = d4*b4-4*c3*a3;

> g23 = d3*b4+2*c3*b3;

> g24 = 2*c5*b4+c4*a4;

> g25 = c4*b4+2*c3*a4;

> g26 = 4*d5*b5-c4*a4;

> g27 = d4*b5-c3*a4;

> g28 = 2*d3*b5+c3*b4;

> g29 = 2*c5*b5+c4*a5;

> g30 = c4*b5+2*c3*a5;

> g31 = d4⌃2-4*d3*d5;

> g32 = c5*d4-c4*d5;

> g33 = c4*d4-4*c3*d5;

> g34 = c5*d3-c3*d5;

> g35 = c4*d3-c3*d4;

> g36 = c4⌃2-4*c3*c5;

> g37 = 2*b3*b2*a3-b4*b1*a3-2*b3⌃2*a2+b4*b3*a1;

> g38 = b4*b2*a3-2*b5*b1*a3-b4*b3*a2+2*b5*b3*a1;

> g39 = d3*b2*a3+c3*b1*a3-d3*b3*a2-c3*b3*a1;

> g40 = d5*b1⌃2*a2+c5*b1⌃2*a1+d4*b1*a2*a1

+c4*b1*a1⌃2+d3*a2*a1⌃2+c3*a1⌃3+a3;

> g41 = d4*b1⌃2*a2+c4*b1⌃2*a1+4*d3*b1*a2*a1

-2*d3*b2*a1⌃2+2*c3*b1*a1⌃2-2*b3;

> g42 = 2*c5*b1⌃2*a2-2*c5*b2*b1*a1+c4*b1*a2*a1

-c4*b2*a1⌃2-a4;

> g43 = c4*b1⌃2*a2-c4*b2*b1*a1+2*c3*b1*a2*a1

-2*c3*b2*a1⌃2+b4;

> g44 = 2*c5*b2*b1*a2+c4*b1*a2⌃2-2*c5*b2⌃2*a1

-c4*b2*a2*a1-2*a5;

> g45 = c4*b2*b1*a2+2*c3*b1*a2⌃2-c4*b2⌃2*a1-2*c3*b2*

a2*a1+2*b5;

> g46 = 2*d3*b1⌃2*a2⌃2-4*d3*b2*b1*a2*a1

+2*d3*b2⌃2*a1⌃2+2*b3*b2-b4*b1;

> g47 = 2*c3*b1⌃2*a2⌃2-4*c3*b2*b1*a2*a1

+2*c3*b2⌃2*a1⌃2-b4*b2+2*b5*b1;

> g48 = d3*b1⌃2*a3*a2+c3*b1⌃2*a3*a1-2*d3*b3*b1*a2*a1

+d3*b3*b2*a1⌃2

-c3*b3*b1*a1⌃2+b3⌃2;

> g49 = 2*c3*b1⌃2*a3*a2-2*c3*b2*b1*a3*a1-2*c3*b3*b1*a2*a1

+2*c3*b3*b2*a1⌃2

-b4*b3;

> g50 = c3*b2*b1*a3*a2-c3*b3*b1*a2⌃2-c3*b2⌃2*a3*a1

+c3*b3*b2*a2*a1-b5*b3;

> g51 = 2*c5*b2⌃2*a3*a2+2*c4*b2*a3*a2⌃2+2*c3*a3*a2⌃3

-c5*b2⌃2*a4*a1

-c4*b2*a4*a2*a1-c3*a4*a2⌃2*a1-a5*a4;

> g52 = 2*c4*b2⌃2*a3*a2+8*c3*b2*a3*a2⌃2

-4*c3*b3*a2⌃3-c4*b2⌃2*a4*a1

-4*c3*b2*a4*a2*a1+2*c3*b4*a2⌃2*a1+2*b5*a4;

> g53 = 2*c3*b2⌃2*a3*a2-2*c3*b3*b2*a2⌃2

-c3*b4*b1*a2⌃2-c3*b2⌃2*a4*a1

+2*c3*b4*b2*a2*a1-b5*b4;

> g54 = c5*b2⌃2*a4*a2+c4*b2*a4*a2⌃2

+c3*a4*a2⌃3-2*c5*b2⌃2*a5*a1

-2*c4*b2*a5*a2*a1-2*c3*a5*a2⌃2*a1-2*a5⌃2;

> g55 = c4*b2⌃2*a4*a2+4*c3*b2*a4*a2

⌃2-2*c3*b4*a2⌃3-2*c4*b2⌃2*a5*a1

-8*c3*b2*a5*a2*a1+4*c3*b5*a2⌃2*a1+4*b5*a5;

> g56 = c3*b2⌃2*a4*a2-c3*b4*b2*a2

⌃2-2*c3*b5*b1*a2⌃2-2*c3*b2⌃2*a5*a1

+4*c3*b5*b2*a2*a1-2*b5⌃2;

> g57 = a3;

> g58 = a5;

> g59 = b3;

> g60 = 1-u*b5;

> ideal I1=g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,

g14,g15,g16,g17,g18,g19,g20,g21,g22,g23,g24,g25,g26,g27,

g28,g29,g30,g31,g32,g33,g34,g35,g36,g37,g38,g39,g40,g41,

g42,g43,g44,g45,g46,g47,g48,g49,g50,g51,g52,g53,g54,

g55,g56,g57,g58,g59,g60;

> // eliminate variables u

> ideal I11=eliminate(I1,u);

> // find the minimal irreducible decomposition for I11

> minAssGTZ(I11);

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Li, L. & Liu, L. Topological Classifications for a Class of 2-dimensional Quadratic Mappings and an Application to Iterative Roots. Qual. Theory Dyn. Syst. 20, 2 (2021). https://doi.org/10.1007/s12346-020-00444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00444-8

Keywords

Mathematics Subject Classification

Navigation