Skip to main content
Log in

Travelling Wave Solutions of the General Regularized Long Wave Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: \(p=2n+1\) and \(p=2n\) respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when \(p=2n+1\), while it’s not for \(p=2n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci 272(1220), 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Byrd, P., Friedman, M.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971)

    Book  MATH  Google Scholar 

  3. Bona, J., McKinney, W., Restrepo, J.: Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation. J. Nonlinear Sci. 10, 603–638 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Luan, Z., Zhou, Q., Alzahrani, A., Biswas, A., Liu, W.: Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dyn. 100, 2817–2821 (2020)

    Article  Google Scholar 

  5. Dag, I.: Least squares quadratic B-splines finite element method for the regularized long wave equation. Comput. Methods Appl. Mech. Eng. 182, 205–215 (2000)

    Article  MATH  Google Scholar 

  6. Dag, I., Saka, B., Irk, D.: Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput. 195, 373–389 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct. Anal. 275, 988–1007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, B., Maruno, K., Ohta, Y.: A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue. J. Phys. A Math. Theor. 50, 055201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, B., Meng, Q.: Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1783–1790 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, B., Rui, W., Long, Y.: New exact double periodic wave and complex wave solutions for a generalized sinh-Gordon equation. Appl. Math. Comput. 229, 159–172 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Gardner, L., Gardner, G., Dag, I.: AB-spline finite element method for the regularized long wave equation. Commun. Numer. Methods Eng. 11, 59–68 (1995)

    Article  MATH  Google Scholar 

  14. Gardner, L., Gardner, G., Dogan, A.: A least squares finite element scheme for the RLW equation. Commun. Numer. Methods Eng. 12, 795–804 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guan, X., Liu, W., Zhou, Q., et al.: Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. Nonlinear Dyn. 98, 1491–1500 (2019)

    Article  Google Scholar 

  16. García-López, C., Ramos, J.: Solitary waves generated by bell-shaped initial conditions in the inviscid and viscous GRLW equations. Appl. Math. Model. 39(21), 6645–6668 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Karakoc, S., Geyikli, T.: Petrov–Galerkin finite element method for solving the MRLW equation. Math. Sci. 7, 25–34 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korkmaz, A., Hepson, O., et al.: Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class. J. King Saud Univ. Sci. 32(1), 567–574 (2020)

    Article  Google Scholar 

  19. Khalifa, A., Raslan, K., Alzubaidi, H.: A finite difference scheme for the MRLW and solitary wave interactions. Appl. Math. Comput. 189, 346–354 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Khalifa, A., Raslan, K., Alzubaidi, H.: A collocation method with cubic B-splines for solving the MRLW equation. J. Comput. Appl. Math. 212(2), 406–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaya, D., El-Sayed, S.: An application of the decomposition method for the generalized KdV and RLW equations. Chaos Solitons Fract. 17, 869–877 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karakoc, S., Geyikli, T.: Petrov–Galerkin finite element method for solving the MRLW equation. Math. Sci. 7(1), 25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.: Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)

    Google Scholar 

  24. Liu, H., Yue, C.: Lie symmetries, integrable properties and exact solutions to the variable-coefficient nonlinear evolution equations. Nonlinear Dyn. 89(3), 1989–2000 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, S., Zhou, Q., Biswas, A., et al.: Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn. 98, 395–401 (2019)

    Article  MATH  Google Scholar 

  26. Mirzazadeh, M., Eslami, M., Biswas, A.: Soliton solutions of the generalized Klein–Gordon equation by using G’/G-expansion method. Comput. Appl. Math. 33, 831–839 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mirzazadeh, M., Eslami, M., Biswas, A.: 1-Soliton solution of KdV6 equation. Nonlinear Dyn. 80(1–2), 387–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mokhtari, R., Mohammadi, M.: Numerical solution of GRLW equation using Sinc-collocation method. Comput. Phys. Commun. 181, 1266–1274 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raslan, K.: A computational method for the regularized long wave (RLW) equation. Appl. Math. Comput. 176, 1101–1118 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Roshan, T.: A Petrov–Galerkin method for solving the generalized regularized long-wave (GRLW) equation. Comput. Math. Appl. 63, 943–956 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Soliman, A.: Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method. Math. Comput. Simul. 70, 119–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soliman, A., Hussien, M.: Collocation solution for RLW equation with septic splines. Appl. Math. Comput. 161, 623–636 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Soliman, A., Raslan, K.: Collocation method using quadratic B-spline for the RLW equation. Int. J. Comput. Math. 78, 399–412 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, Y., Tang, X.: Stability, steady-state bifurcations, and turing patterns in a predator–prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139(3), 371–404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, X., Huang, W., Cai, J.: Coexistence of the solitary and periodic waves in convecting shallow water fluid. Nonlinear Anal-Real. 53, 103067 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms. Discrete Contin. Dyn. Syst. 24, 965–987 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Wazwaz, A.: The tanh method for travelling wave solutions to the Zhiber–Shabat equation and other related equations. Commun. Nonlinear Sci. Numer. Simul. 13, 584–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J., Bai, F., Cheng, Y.: A meshless method for the nonlinear generalized regularized long wave equation. Chin. Phys. B. 20(3), 030206-1/8 (2011)

    Article  Google Scholar 

  39. Xia, Y., Grasic, M., Huang, W., Romanovski, V.: Limit cycles in a model of olfactory sensory neurons. Int. J. Bifurc. Chaos 29, 1950038 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X., Huo, D., Hong, X.: Periodic transmission and control of optical solitons in optical fibers. Optik 216, 164752 (2020)

    Article  Google Scholar 

  41. Zhang, B., Xia, Y., Zhu, W., Bai, Y.: Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh–cosh-Gordon equation. Appl. Math. Comput. 63, 124576 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Zheng, L., Yong, L., Ying, Z., Liang, Z.: Exact solutions of Gerdjikov–Ivanov equation. Acta Phys. Sin. 51, 2031–2034 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province under Grant (No. LY20A010016), National Natural Science Foundation of China under Grant (No. 11931016), Fujian Province Young Middle-Aged teachers education scientific research project (No. JT180558 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Xia, Y., Bai, Y. et al. Travelling Wave Solutions of the General Regularized Long Wave Equation. Qual. Theory Dyn. Syst. 20, 8 (2021). https://doi.org/10.1007/s12346-020-00442-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00442-w

Keywords

Navigation