Skip to main content
Log in

The Existence of Aubry–Mather sets for the Fermi–Ulam Model

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We consider the Fermi–Ulam model, which can be described as a particle moving freely between two vertical rigid walls; the left one being fixed, whereas the right one moves according to a regular periodic function. The particle is elastically reflected when hitting the walls. We show that the dynamics of the model can be described by an area-preserving monotone twist map. Thus, the Aubry–Mather sets exist for every rotation number in the rotation interval. Consequently, this gives a description of global dynamics behavior, particularly a large class of periodic and quasiperiodic orbits for the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 15, 1169–1174 (1949)

    Article  Google Scholar 

  2. Ulam, S.: On some statistical properties of dynamical systems. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 3: Contributions to Astronomy, Meteorology, and Physics, pp. 315–320. University of California Press, Berkeley (1961)

  3. Douady, R.: Applications du théorème des tores invariants. Thése de 3éme Cycle, University of Paris VII (1982)

  4. Pustyl’nikov, L.D.: On Ulam problem. Theor. Math. Phys. 57, 1035–1038 (1983)

    Article  Google Scholar 

  5. Pustyl’nikov, L.D.: Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem. Russ. Acad. Sci. Sb. Math. 82, 113–124 (1995)

    Google Scholar 

  6. Laederich, S., Levi, M.: Invariant curves and time-dependent potentials. Ergod. Theor. Dyn. Syst. 11, 365–378 (1991)

    Article  MathSciNet  Google Scholar 

  7. Kruger, T., Pustyl’nikov, L.D., Troubetzkoy, S.E.: Acceleration of bouncing balls in external fields. Nonlinearity 8, 397–410 (1994)

    Article  MathSciNet  Google Scholar 

  8. Kunze, M., Ortega, R.: Complete orbits for twist maps on the plane: the case of small twist. Ergod. Theor. Dyn. Syst. 31, 1471–1498 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zharnitsky, V.: Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi–Ulam problem. Nonlinearity 13, 1123–1136 (2000)

    Article  MathSciNet  Google Scholar 

  10. Zharnitsky, V.: Instability in Fermi–Ulam ping-pong problem. Nonlinearity 11, 1481–1487 (1998)

    Article  MathSciNet  Google Scholar 

  11. de Simoi, J., Dolgopyat, D.: Dynamics of some piecewise smooth Fermi–Ulam models. Chaos 22, 026124 (2012)

    Article  MathSciNet  Google Scholar 

  12. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1997)

    MATH  Google Scholar 

  13. Siegel, C.L., Moser, J.: Lectures on Celestial Mechanics. Springer, Berlin (1971)

    Book  Google Scholar 

  14. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8, 381–422 (1983)

    Article  MathSciNet  Google Scholar 

  15. Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21, 457–467 (1982)

    Article  MathSciNet  Google Scholar 

  16. Boyland, P.: Dual billiards, twist maps and impact oscillators. Nonlinearity 9, 1411–1438 (1996)

    Article  MathSciNet  Google Scholar 

  17. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  18. Marò, S.: Coexistence of bounded and unbounded motions in a bouncing ball model. Nonlinearity 26, 1439–1448 (2013)

    Article  MathSciNet  Google Scholar 

  19. Pei, M.: Aubry–Mather sets for finite-twist maps of a cylinder and semilinear Duffing equations. J. Differ. Equ. 113, 106–127 (1994)

    Article  MathSciNet  Google Scholar 

  20. Shi, G.H.: Aubry–Mather sets for relativistic oscillators with anharmonic potentials. Acta Math. Sin. Engl. Ser. 33, 439–448 (2017)

    Article  MathSciNet  Google Scholar 

  21. Marò, S.: Relativistic pendulum and invariant curves. Discrete Contin. Dyn. Syst. 35, 1139–1162 (2015)

    Article  MathSciNet  Google Scholar 

  22. Mather, J.N., Forni, G.: Action minimizing orbits in Hamiltonian systems. Transition to Chaos in Classical and Quantum Mechaniccsv (Montecatini Terme, 1991), Lecture Notes in Mathematics, Vol. 1589, pp. 92–186. Springer. Berlin (1994)

  23. Bangert, V.: Mather sets for twist maps and geodesics on tori. Dyn. Rep. 1, 1–54 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Katok, A.: Some remarks on Birkhoff and Mather twist map theorems. Ergod. Theor. Dyn. Syst. 11, 185–194 (1982)

    Article  MathSciNet  Google Scholar 

  25. Capietto, A., Soave, N.: Some remarks on Mather’s theorem and Aubry–Mather sets. Commun. Appl. Anal. 15, 283–298 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (11732014). The authors express their gratitude to the reviewer for fruitful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denghui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Grebogi, C., Li, D. et al. The Existence of Aubry–Mather sets for the Fermi–Ulam Model. Qual. Theory Dyn. Syst. 20, 12 (2021). https://doi.org/10.1007/s12346-021-00446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00446-0

Keywords

Navigation