Skip to main content
Log in

Ergodicities of Infinite Dimensional Nonlinear Stochastic Operators

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In the present paper, we introduce two classes \({\mathcal {L}}^+\) and \({\mathcal {L}}^-\) of nonlinear stochastic operators acting on the simplex of \(\ell ^1\)-space. For each operator V from these classes, we study omega limiting sets \(\omega _V\) and \(\omega _V^{(w)}\) with respect to \(\ell ^1\)-norm and pointwise convergence, respectively. As a consequence of the investigation, we establish that every operator from the introduced classes is weak ergodic. However, if V belongs to \({{\mathcal {L}}}^-\), then it is not ergodic (w.r.t \(\ell ^1\)-norm) while V is weak ergodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E., Losert, V.: Evolutionary dynamics of zero-sum games. J. Math. Biol. 20, 231–258 (1984)

    Article  MathSciNet  Google Scholar 

  2. Badocha, M., Bartoszek, W.: Quadratic stochastic operators on Banach lattices. Positivity 22, 477–492 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bartoszek, K., Pulka, M.: Quadratic stochastic operators as a tool in modelling the dynamics of a distribution of a population trait. In: Proceedings of the Nineteenth National Conference on Applications of Mathematics in Biology and Medicine, Jastrzebia Gora, pp. 19–24 (2013)

  4. Bartoszek, K., Pulka, M.: Asymptotic properties of quadratic stochastic operators acting on the \(L_1\)-space. Nonlinear Anal. Theory Methods Appl. 114, 26–39 (2015)

    Article  Google Scholar 

  5. Chauvet, E., Paullet, J.E., Privite, J.P., Walls, Z.: A Lotka–Volterra three-species food chain. Math Mag. 75, 243–255 (2002)

    Article  MathSciNet  Google Scholar 

  6. Ganikhodzhaev, R.N.: Quadratic stochastic operators, Lyapunov functions, and tournaments. Russ. Acad. Sci. Sbornik Math. 76, 489–506 (1993)

    Article  MathSciNet  Google Scholar 

  7. Ganikhodzhaev, R., Mukhamedov, F., Rozikov, U.: Quadratic stochastic operators and processes: results and open problems. Infin. Dimens. Anal. Quant. Probab. Relat. Top. 14, 270–335 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge (1998)

    Book  Google Scholar 

  9. Jamilov, U.U.: Quadratic stochastic operators corresponding to graphs. Lobachevskii J. Math 34, 148–151 (2013)

    Article  MathSciNet  Google Scholar 

  10. Jamilov, U., Ladra, M.: Non-ergodicity of uniform quadratic stochastic operators. Qual. Theory Dyn. Syst. 15, 257–271 (2016)

    Article  MathSciNet  Google Scholar 

  11. Kolokoltsov, V.N.: Nonlinear Markov Processes and Kinetic Equations. Cambridge Univ. Press, New York (2010)

    Book  Google Scholar 

  12. Li, W., Ng, M.K.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62, 362–385 (2014)

    Article  MathSciNet  Google Scholar 

  13. Li, C.-K., Zhang, S.: Stationary probability vectors of higher-order Markov chains. Linear Algebra Appl. 473, 114–125 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lyubich, Y.I.: Mathematical structures in population genetics. Springer, Berlin (1992)

    Book  Google Scholar 

  15. McKean, H.P.: A class of Markov processess associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56, 1907–1911 (1966)

    Article  MathSciNet  Google Scholar 

  16. Mukhamedov, F., Akin, H., Temir, S.: On infinite dimensional quadratic Volterra operators. J. Math. Anal. Appl. 310, 533–556 (2005)

    Article  MathSciNet  Google Scholar 

  17. Mukhamedov, F., Embong, A.F.: Uniqueness of fixed points of \( b\)-bistochastic quadratic stochastic operators and associated nonhomogenous Markov chains. Linear Multilinear Alg. 66, 1–21 (2018)

    Article  Google Scholar 

  18. Mukhamedov F., Embong A.F.: Infinite dimensional orthogonality preserving nonlinear Markov operators. Linear Multilinear Alg. https://doi.org/10.1080/03081087.2019.1607241

  19. Mukhamedov F., Ganikhodjaev N.: Quantum Quadratic Operators and Processes, Lect. Notes Math. 2133, Springer (2015)

  20. Mukhamedov, F., Khakimov, O.N., Embong, A.F.: On Surjective second order non-linear Markov operators and associated nonlinear integral equations. Positivity 22, 1445–1459 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mukhamedov, F., Pah, C.H., Rosli, A.: On non-ergodic Volterra cubic stochastic operators. Qual. Theor. Dyn. Syst. 18, 1225–1235 (2019)

    Article  MathSciNet  Google Scholar 

  22. Mukhamedov, F., Saburov, M.: Stability and monotonicity of Lotka–Volterra type operators. Qual. Theor. Dyn. Syst. 16, 249–267 (2017)

    Article  MathSciNet  Google Scholar 

  23. Nagylaki, T.: Evolution of a large population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 5941–5945 (1983)

    Article  MathSciNet  Google Scholar 

  24. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  25. Saburov, M.: A class of nonergodic Lotka–Volterra operators. Math. Not. 97, 759–763 (2015)

    Article  MathSciNet  Google Scholar 

  26. Shi, Y., Chen, G.: Chaos for discrete dynamical systems in complete metric spaces. Chaos, Solitons Fract. 22, 555–571 (2004)

    Article  MathSciNet  Google Scholar 

  27. Takeuchi, Y.: Global Dynamical Properties of Lotka–Volterra Systems. World Scientific, Singapore (1996)

    Book  Google Scholar 

  28. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publisher, New York (1960)

    MATH  Google Scholar 

  29. Zakharevich, M.I.: On behavior of trajectories and the ergodic hypothesis for quadratic transformations of the simplex. Russ. Math. Surv. 33, 265–266 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The present work is supported by the UAEU UPAR Grant No. 31S391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Pointwise Convergence on \(\ell ^1\)

Appendix A. Pointwise Convergence on \(\ell ^1\)

In this section is devoted to some properties of point-wise convergence in \(\ell ^1\).

It is known that \(S=convh(Extr S)\), where Extr(S) is the extremal points of S and convh(A) is the convex hall of a set A. Any extremal point of S has the following form:

$$\begin{aligned} {{\mathbf {e}}}_k=(\underbrace{0,\ldots ,0,1}_{k},0,0,\ldots ), \ \ \forall k\in {\mathbb {N}}. \end{aligned}$$

Here and henceforth we denote

$$\begin{aligned} riS_r = \left\{ {{\mathbf {x}}}\in S_r : x_{k}>0,\ k\in {\mathbb {N}}\right\} , \ \ \partial S_r = S_r{\setminus } riS_r. \end{aligned}$$

Let \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\) be a sequence in \(\ell _1\). In what follows we write \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\left\| \cdot \right\| }}{{\mathbf {a}}}\) instead of \(\left\| {{\mathbf {x}}}^{(n)}-{{\mathbf {a}}}\right\| \rightarrow 0\).

Remark A.1

Note that for any \(r>0\) the sets \(S_r\) and \(B_r\) are not compact w.r.t. \(\ell ^1\)-norm. In the finite dimensional setting, analogues of these sets are compact, and hence, the investigation of the dynamics of nonlinear mappings over these kind of sets use well-known methods and techniques of dynamical systems. In our case, the non compactness (w.r.t. \(\ell ^1\)-norm) of the set \(\mathbf{B}_r^+\) complicates our further investigation on dynamics of Volterra operators. Therefore, we need such a weak topology on \(\ell ^1\) so that the set \(\mathbf{B}_r^+\) would be compact with respect to that topology.

One of weak topologies on \(\ell ^1\) is the Tychonov topology which generates the pointwise convergence. We say that a sequence \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\subset \ell ^1\) converges pointwise to \({{\mathbf {x}}}=(x_1,x_2,\ldots )\in \ell ^1\) if

$$\begin{aligned} \lim _{n\rightarrow \infty }x^{(n)}_k=x_k\ \ \ \text{ for } \text{ every } k\ge 1. \end{aligned}$$

and write \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {x}}}\).

Remark A.2

We notice that the set \(\ell ^1\) is not closed w.r.t. pointwise topology, and its completion is s which is the space of all sequences. It is known that this topology is metrizable by the following metric:

$$\begin{aligned} \rho ({{\mathbf {a}}},\mathbf{b})=\sum _{k=1}^\infty 2^{-k}\frac{|a_k-b_k|}{1+|a_k-b_k|},\ \ \ {{\mathbf {a}}},\mathbf{b}\in s. \end{aligned}$$
(A.1)

Hence, for a given sequence \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\subset s\) the following statements are equivalent:

  1. (i)

    \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {x}}}\);

  2. (ii)

    \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\rho }}{{\mathbf {x}}}\).

In the sequel, we will show that the unit ball of \(\ell ^1\) is compact w.r.t. pointwise convergence, while whole \(\ell ^1\) is not closed in s.

We recall that \(\ell ^\infty \) is defined to be the space of all bounded sequences endowed with the norm

$$\begin{aligned} \left\| {{\mathbf {x}}}\right\| _{\infty }=\sup \left\{ |x_{n}|: n\in {\mathbb {N}}\right\} . \end{aligned}$$

The following lemma plays a crucial role in our further investigations.

Lemma A.3

Let \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\subset S_r\), for some \(r>0\). If \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\left\| \cdot \right\| }}{{\mathbf {a}}}\), then \({{\mathbf {a}}}\in S_r\).

Proof

It is easy to check that \(\left\| {{\mathbf {x}}}-{{\mathbf {y}}}\right\| \ge |r-\rho |\), \(\forall {{\mathbf {x}}}\in S_r,\ \forall {{\mathbf {y}}}\in S_\rho \). This fact together with \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\left\| \cdot \right\| }}{{\mathbf {a}}}\) yields that \({{\mathbf {a}}}\in S_r\). \(\square \)

Proposition A.4

The set \(\mathbf{B}_1^+\) is sequentially compact w.r.t. the pointwise convergence.

It is clear that \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\left\| \cdot \right\| }}{{\mathbf {a}}}\) implies \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {a}}}\). A natural question arises: is there any equivalence criteria for these two types of convergence on some set? Next result gives a positive answer to this question.

Lemma A.5

Let \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\) be a sequence on \(S_r\). Then the following statements are equivalent:

  1. (1)

    \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\left\| \cdot \right\| }}{{\mathbf {a}}}\) and \({{\mathbf {a}}}\in S_r\);

  2. (2)

    \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {a}}}\) and \({{\mathbf {a}}}\in S_r\).

Recall that a functional \(\varphi :\ell ^1\rightarrow {\mathbb {R}}\) is called pointwise continuous if for any \({{\mathbf {a}}}\in \ell ^1\) and any sequence \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\subset \ell ^1\) with \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {a}}}\) one has \(\varphi ({{\mathbf {x}}}^{(n)})\rightarrow \varphi ({{\mathbf {a}}})\).

Now we provide a criteria for linear functionals to be pointwise continuous.

Given \(\mathbf{b}\in \ell ^\infty \), let us define

$$\begin{aligned} \varphi _\mathbf{b}({{\mathbf {x}}})=\sum _{k=1}^\infty b_kx_k,\ \ \ \ {{\mathbf {x}}}\in \ell ^1. \end{aligned}$$
(A.2)

Lemma A.6

Let \(\mathbf{b}\in \ell ^\infty \), then the linear functional \(\varphi _\mathbf{b}\) is pointwise continuous on \(\mathbf{B}_1^+\) iff \(\mathbf{b}\in c_0\).

Proof

Assume that \(\varphi _\mathbf{b}\) is a pointwise continuous. Consider the sequence \(\{{{\mathbf {e}}}_n\}_{n\ge 1}\) for which one has \({{\mathbf {e}}}_n{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}\mathbf {0}\), where \(\mathbf{{0}}=(0,0,\ldots )\). From \(\varphi _\mathbf{b}({{\mathbf {e}}}_n)=b_n\), \(\varphi _\mathbf{b}(\mathbf{{0}})=0\) and the pointwise continuity of \(\varphi _\mathbf{b}\) implies \(b_n\rightarrow 0\) as \(n\rightarrow \infty \).

Now let us suppose that \(b_k\rightarrow 0\) as \(k\rightarrow \infty \), and take any sequence \(\{{{\mathbf {x}}}^{(n)}\}_{n\ge 1}\subset \mathbf{B}_r^+\) such that \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {x}}}\). We will show that \(\varphi _\mathbf{b}({{\mathbf {x}}}^{(n)})\rightarrow \varphi _\mathbf{b}({{\mathbf {x}}})\). If \(\left\| \mathbf{b}\right\| _\infty =0\) then nothing to proof. So, we consider \(\left\| \mathbf{b}\right\| _\infty \ne 0\).

Take an arbitrary positive number \(\varepsilon \). Then there exists an integer \(m\ge 1\) such that \(|b_k|<\frac{\varepsilon }{4r}\) for all \(k>m\). The pointwise convergence \({{\mathbf {x}}}^{(n)}{\mathop {\longrightarrow }\limits ^{\mathrm {p.w.}}}{{\mathbf {x}}}\) implies the existence of an integer \(n_0\) such that

$$\begin{aligned} |x^{(n)}_k-x_k|<\frac{\varepsilon }{2\left\| \mathbf{b}\right\| _\infty },\ \ k\in \{1,\ldots ,m\},\ \ \ \forall n>n_0. \end{aligned}$$

Consequently, we have

$$\begin{aligned} \left| \varphi _\mathbf{b}({{\mathbf {x}}}^{(n)})-\varphi _\mathbf{b}({{\mathbf {x}}})\right|\le & {} \left| \sum _{k\le m}b_k(x_k^{(n)}-x_k)\right| + \left| \sum _{k>m}b_k(x_k^{(n)}-x_k)\right| \\\le & {} \sum _{k\le m}\left| b_k(x_k^{(n)}-x_k)\right| +\sum _{k>m}\left| b_k(x_k^{(n)}-x_k)\right| \\\le & {} \left\| \mathbf{b}\right\| _\infty \sum _{k\le m}\left| x_k^{(n)}-x_k\right| +\frac{\varepsilon }{4r}\sum _{k>m}\left| x_k^{(n)}-x_k\right| \\< & {} \left\| \mathbf{b}\right\| _\infty \cdot \frac{\varepsilon }{2\left\| \mathbf{b}\right\| }_\infty +\frac{\varepsilon }{4r}\cdot 2r\\= & {} \varepsilon ,\ \ \ \text {for all} \ \ n>n_0. \end{aligned}$$

This yields the desired assertion. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F., Khakimov, O. & Embong, A.F. Ergodicities of Infinite Dimensional Nonlinear Stochastic Operators. Qual. Theory Dyn. Syst. 19, 79 (2020). https://doi.org/10.1007/s12346-020-00415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00415-z

Keywords

Mathematics Subject Classification

Navigation