Skip to main content
Log in

Partially Periodic Point Free Self-Maps on Product of Spheres and Lie Groups

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Let X be a topological manifold and \(f:X\rightarrow X\) a continuous map. We say the map f is partially periodic point free up to period n if f does not have periodic points of periods smaller than \(n+1\). A weaker notion is Lefschetz partially periodic point free up to period n, i.e. the Lefschetz numbers of the iterates of f up to n are all zero. Similarly f is Lefschetz periodic point free if the Lefschetz numbers of all iterates of f are zero. In the present article we consider continuous self-maps on products of any number spheres of different dimensions. We give necessary and sufficient conditions for such maps to be Lefschetz periodic point free and Lefschetz partially periodic point free. We apply these results to continuous self-maps on Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsedà, Ll, Llibre, J., Misiurewicz, M.: Combinatorial Dynamics and Entropy in Dimension One, Advanced Series in Nonlinear Dynamics, vol. 5, 2nd edn. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  2. Barge, M.M., Walker, R.B.: Periodic point free maps of tori which have rotation sets with interior. Nonlinearity 6, 481–489 (1993)

    Article  MathSciNet  Google Scholar 

  3. Berrizbeitia, P., González, M.J., Sirvent, V.F.: On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of \(\ell \)-spheres. Topology Appl. 235, 428–444 (2018)

    Article  MathSciNet  Google Scholar 

  4. Brown, R.F.: The Lefschetz Fixed Point Theorem. Scott, Foresman and Company, Glenview, IL (1971)

    MATH  Google Scholar 

  5. Conner, P.E., Floyd, E.E.: On the construction of periodic maps without fixed points. Proc. Am. Math. Soc. 10, 354–360 (1959)

    Article  MathSciNet  Google Scholar 

  6. Duan, H.: The Lefschetz numbers of iterated maps. Topol. Appl. 67(1), 71–79 (1995)

    Article  MathSciNet  Google Scholar 

  7. Franks, J., Llibre, J.: Periods of surface homeomorphisms. Contemp. Math. 117, 63–77 (1991)

    Article  MathSciNet  Google Scholar 

  8. Fuller, F.B.: The existence of periodic points. Ann. Math. 57, 229–230 (1953)

    Article  MathSciNet  Google Scholar 

  9. Gierzkiewicz, A., Wójcik, K.: Lefschetz sequences and detecting periodic points. Discrete Contin. Dyn. Syst. 32, 81–100 (2012)

    Article  MathSciNet  Google Scholar 

  10. Graff, G., Kaczkowska, A.P., Nowak-Przygodzki, Signerska J: Lefschetz periodic point free self-maps of compact manifolds. J. Topol. Appl. 159, 2728–2735 (2012)

    Article  MathSciNet  Google Scholar 

  11. Guirao, J.L.G., Llibre, J.: On the Lefschetz periodic point free continuous self-maps on connected compact manifolds. Topology Appl. 158, 2165–2169 (2011)

    Article  MathSciNet  Google Scholar 

  12. Hall, G.R., Turpin, M.: Robustness of periodic point free maps of the annulus. Topol. Appl. 69, 211–215 (1996)

    Article  MathSciNet  Google Scholar 

  13. Handel, M.: Periodic point free homeomorphism of\({\mathbb{T}}^{2}\). Proc. Am. Math. Soc. 107, 511–515 (1989)

    MATH  Google Scholar 

  14. Halpern, B.: Periodic points on tori. Pacific J. Math. 83(1), 117–133 (1979)

    Article  MathSciNet  Google Scholar 

  15. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Jezierski, J., Marzantowicz, W.: Homotopy methods in topological fixed and periodic points theory, Topological Fixed Point Theory and Its Applications 3. Springer, Dordrecht (2006)

    Book  Google Scholar 

  17. Jäger, T.: Periodic point free homeomorphisms of the open annulus: From skew products to non-fibred maps. Proc. Am. Math. Soc. 138, 1751–1764 (2010)

    Article  MathSciNet  Google Scholar 

  18. Kumpel, P.G.: Lie groups and product of spheres. Proc. Am. Math. Soc. 16, 1350–1356 (1965)

    Article  MathSciNet  Google Scholar 

  19. Kwapisz, J.: A priori degeneracy of one-dimensional rotation sets for periodic point free torus maps. Trans. Am. Math. Soc. 354, 2865–2895 (2002)

    Article  MathSciNet  Google Scholar 

  20. Lefschetz, S.: Intersections and transformations of complexes and manifolds. Trans. Am. Math. Soc. 28, 1–49 (1926)

    Article  MathSciNet  Google Scholar 

  21. Llibre, J.: A note on the set of periods of transversal homological sphere self-maps. J. Differ. Equ. Appl. 9, 417–422 (2003)

    Article  MathSciNet  Google Scholar 

  22. Llibre, J.: Periodic point free continuous self-maps on graphs and surfaces. Topol. Appl. 159, 2228–2231 (2012)

    Article  MathSciNet  Google Scholar 

  23. Llibre, J., Sirvent, V.F.: Partially periodic point free self-maps on surfaces, graphs, wedge sums and products of spheres. J. Differ. Equ. Appl. 19, 1654–1662 (2013)

    Article  MathSciNet  Google Scholar 

  24. Llibre, J., Sirvent, V.F.:On Lefschetz periodic point free self-maps. J. Fixed Point Theory Appl. 20 , no. 1, Art. 38, 9 pp (2018)

  25. Llibre, J., Sirvent, V.F.: Periodic structure of transversal maps on sum-free products of spheres. J. Differ. Equ. Appl. 25, 619–629 (2019)

    Article  MathSciNet  Google Scholar 

  26. Llibre, J., Todd, M.: Periods, Lefschetz numbers and entropy for a class of maps on a bouquet of circles. J. Differ. Equ. Appl. 11, 1049–1069 (2005)

    Article  MathSciNet  Google Scholar 

  27. Samelson, H.: Topology of Lie groups. Bull. Am. Math. Soc. 58, 2–37 (1952)

    Article  MathSciNet  Google Scholar 

  28. Smith, P.A.: Fixed-point theorems for periodic transformations. Am. J. Math. 63, 1–8 (1941)

    Article  MathSciNet  Google Scholar 

  29. Vick, J.W.: Homology theory. An introduction to algebraic topology, Springer–Verlag, New York, 1994. Academic Press, New York, 1973

  30. Wang, S.: Free degrees of homeomorphisms and periodic maps on closed surfaces. Topol. Appl. 46, 81–87 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor F. Sirvent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirvent, V.F. Partially Periodic Point Free Self-Maps on Product of Spheres and Lie Groups. Qual. Theory Dyn. Syst. 19, 84 (2020). https://doi.org/10.1007/s12346-020-00419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00419-9

Keywords

Mathematics Subject Classification

Navigation