Skip to main content
Log in

Positive Periodic Solutions of Coupled Singular Rayleigh Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper mainly aims to investigate the positive periodic solutions for coupled singular Rayleigh systems. In order to establish the coupled structure, the basic framework of graph theory is employed. By means of Lyapunov method, inequality techniques and a classical consequence of Mawhin’s continuation theorem, some sufficient criterion for the positive periodic solutions has been provided. After that, taken the effects of the delays into account and without imposing more conditions, we further study the positive periodic solutions for a kind of coupled singular Rayleigh system with delays. Here not only the structure is more general than the existing works but the conditions imposed are concise. Consequently, compared with the previous results on the singular systems and coupled systems, the results we established are more generalized and some previous ones can been complemented and improved. Finally, the effectiveness of the established results are validated via an numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, Z.B., Li, F.F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay. Mediterr. J. Math. 15, 134 (2018). https://doi.org/10.1007/s00009-018-1184-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, Z.B., Yuan, Q.G.: Damped superlinear Duffing equation with strong singularity of repulsive type. J. Fixed Point Theory Appl. 22, 37 (2020). https://doi.org/10.1007/s11784-020-0774-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Forbat, F., Huaux, A.: Détermination approchée et stabilité locale de la solution périodique d’une équation différentielle non linéaire, Mém. Publ. Soc. Sci. Arts Lett. Hainaut. 76, 3–13 (1962)

    MATH  Google Scholar 

  4. Guo, H.B., Li, M.Y., Shuai, Z.S.: A graph-theoretic approach to the method of global Lyapunov functions. Proc. Am. Math. Soc. 136, 280–286 (2008)

    MathSciNet  Google Scholar 

  5. Guo, H.B., Li, M.Y., Shuai, Z.S.: Global dynamics of a general class of multistage models for infectious diseases. SIAM J. Appl. Math. 72(1), 261–279 (2012)

    Article  MathSciNet  Google Scholar 

  6. Guo, Y., Liu, S., Ding, X.H.: The existence of periodic solutions for coupled Rayleigh system. Neurocomputing 191, 398–408 (2016)

    Article  Google Scholar 

  7. Habets, P., Torres, P.J.: Some multiplicity results for periodic solutions of a Rayleigh differential equation. Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 8, 335–351 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Hakl, R., Torres, P.J.: On periodic solutions of second-order differential equations with attractive-repulsive singularities. J. Differ. Equ. 248, 111–126 (2010)

    Article  MathSciNet  Google Scholar 

  9. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)

    Book  Google Scholar 

  10. Kelevedjiev, P.S., Tersian, S.: Singular and nonsingular first-order initial value problems. J. Math. Anal. Appl. 366(2), 516–524 (2010)

    Article  MathSciNet  Google Scholar 

  11. Kong, F.C., Liang, Z.: Positive periodic solutions for singular fourth-order differential equations with a deviating argument. Proc. Roy. Soc. Edinburgh Sect. A. 148(3), 605–617 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kong, F.C., Lu, S.P., Luo, Z.G.: Positive periodic solutions for singular higher order delay differential equations. Results Math. 72, 71–86 (2017)

    Article  MathSciNet  Google Scholar 

  13. Li, X., Ma, Q.: Boundedness of solutions for second order differential equations with asymmetric nonlinearity. J. Math. Anal. Appl. 314, 233–253 (2006)

    Article  MathSciNet  Google Scholar 

  14. Li, M.Y., Shuai, Z.: Global-stability problem for coupled systems of differential equations on networks. J. Differ. Equ. 248, 1–20 (2010)

    Article  MathSciNet  Google Scholar 

  15. Liu, S.Q., Wang, S.K., Wang, L.: Glabal dynamics of delay epidemic models with nonlinear incidence rate and relapse. Nonlinear Anal.: Real World Appl. 12, 119–127 (2011)

    Article  MathSciNet  Google Scholar 

  16. Lord, J.W.: Rayleigh Strutt, Theory of Sound, vol. 1. Dover Publications, New York (1877). re-issued 1945

    Google Scholar 

  17. Lu, S.P., Ge, W.G.: Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear Anal. 56, 501–514 (2006)

    Article  MathSciNet  Google Scholar 

  18. Lu, S.P., Yu, X.C.: Periodic solutions for second order differential equations with indefinite singularities. Adv. Nonlinear Anal. 9(1), 994–1007 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lu, S.P., Guo, Y.Z., Chen, L.J.: Periodic solutions for Liénard equation with an indefinite singularity. Nonlinear Anal. Real World Appl. 45, 542–556 (2019)

    Article  MathSciNet  Google Scholar 

  20. Mawhin, J.L.: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces. J. Differ. Equ. 12, 610–636 (1972)

    Article  MathSciNet  Google Scholar 

  21. Mawhin, J.L.: Topological degree and boundary value problems for nonlinear differential equations. In: Furi, M., Zecca, P. (eds.) Topologic Methods for Ordinary Differential Equations, Lecture Notes in Mathematics, vol. 1537. Springer, New York (1993)

    Google Scholar 

  22. Pishkenari, H.N., Behzad, M., Meghdari, A.: Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation. Chaos Solitons Fractals. 37, 748–762 (2008)

    Article  Google Scholar 

  23. Radhakrishnan, S.: Exact solutions of Rayleighs equation and sufficient conditions for inviscid instability of parallel, bounded shear flows. Z. Angew. Math. Phys. 45, 615–637 (1994)

    Article  MathSciNet  Google Scholar 

  24. Rützel, S., Lee, S.I., Raman, A.: Nonlinear dynamics of atomic-force-microscope probes driven in Lénard-Jones potentials. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459, 1925–1948 (2003)

    Article  Google Scholar 

  25. Sun, R.Y., Shi, J.P.: Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates. Appl. Math. Comput. 218, 280–286 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Wang, Y., Zhang, L.: Existence of asymptotically stable periodic solutions of a Rayleigh type equation. Nonlinear Anal. 71, 1728–1735 (2009)

    Article  MathSciNet  Google Scholar 

  27. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  28. Yang, G., Lu, J., Luo, A.C.J.: On the computation of Lyapunov exponents for forced vibration of a Lennard-Jones oscillator. Chaos Solitons Fractals 23, 833–841 (2005)

    Article  Google Scholar 

  29. Yu, X.C., Lu, S.P.: A multiplicity result for periodic solutions of Liénard equations with an attractive singularity. Appl. Math. Comput. 346, 183–192 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their insightful suggestions which improved this work significantly. This work was jointly supported by the National Natural Science Foundation of China (No. 11671013), Anhui Provincial Natural Science Foundation (No. 2008085QA14) and the Talent Foundation of Anhui Normal University (No. 751965).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the manuscript.

Corresponding authors

Correspondence to Fanchao Kong or Feng Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Liang, F. & Nieto, J.J. Positive Periodic Solutions of Coupled Singular Rayleigh Systems. Qual. Theory Dyn. Syst. 19, 88 (2020). https://doi.org/10.1007/s12346-020-00427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00427-9

Keywords

Navigation