Skip to main content
Log in

Global Behavior and Bifurcation in a Class of Host–Parasitoid Models with a Constant Host Refuge

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, by using the analytical approach, we investigate the global behavior and bifurcation in a class of host–parasitoid models when a constant number of the hosts are safe from parasitism. We find the conditions for the existence and stability of the equilibria. We detect the existence of the Neimark–Sacker bifurcation under certain conditions. We explicitly derived the approximation of the limit curve depending on the parameters that appear in the model. We show that a locally asymptotically stable equilibrium can never be transformed into unstable by increasing a constant number of hosts that are using a refuge. Specially, we consider the effect of constant host refuge in \((S),( HV ),\) and \(( PP )\) models.The obtained results show that the constant number of hosts in refuge affects the qualitative behavior of these models in comparison to the same models without refuge. The theory is confirmed and illustrated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bailey, V.A., Nicholson, J.: The balance of animal populations. Proc. Zool. Soc. Lond. 3, 551–598 (1935)

    Google Scholar 

  2. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamics complexity in predator–pray models framed in difference equations. Nature 255, 58–60 (1975)

    Article  Google Scholar 

  3. Beddington, J.R., Free, C.A., Lawton, J.H.: Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273, 513–519 (1978)

    Article  Google Scholar 

  4. Bešo, E., Mujić, N., Kalabušić, S., Pilav, E.: Stability of a certain class of a host–parasitoid models with a spatial refuge effect. J. Biol. Dyn. 14(1), 1–31 (2020). https://doi.org/10.1080/17513758.2019.169291

    Article  MathSciNet  MATH  Google Scholar 

  5. Bešo, E., Mujić, N., Kalabušić, S., Pilav, E.: Neimark–Sacker bifurcation and stability of a certain class of a host–parasitoid models with a host refuge effect. Int. J. Bifurc. Chaos. 29(12), 195169 (2019). https://doi.org/10.1142/S0218127419501694. (19 pages)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caltagirone, L.E., Doutt, R.L.: The history of the vedalia beetle importation to California and its impact on the development of biological control. Ann. Rev. Entomol. 34, 1–16 (1989)

    Article  Google Scholar 

  7. Chow, Y., Jang, S.: Neimark–Sacker bifurcations in a host–parasitoid system with a host refuge. Discrete Contin. Dyn. Syst. Ser. B. 21(6), 1713–1728 (2016). https://doi.org/10.3934/dcdsb.2016019

    Article  MathSciNet  MATH  Google Scholar 

  8. Costantino, R.F., Cushing, J.M., Dennis, B., Desharnais, R.A.: Experimentally induced transitions in the dynamic behaviour of insect populations. Nature 375, 227–230 (1995)

    Article  Google Scholar 

  9. Costantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B.: Chaotic dynamics in an insect population. Science 275, 389–391 (1997)

    Article  Google Scholar 

  10. Cushing, J.M.: Cycle chains and the LPA model. J. Differ. Equ. Appl. 9, 655–670 (2003)

    Article  MathSciNet  Google Scholar 

  11. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Chaos in Ecology: Experimental Nonlinear Dynamics, Theoretical Ecology Series. Academic Press, New York (2003)

    Google Scholar 

  12. DeBach, P., Rosen, D.: Biological Control by Natural Enemies. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  13. Din, Q.: Global behavior of a host–parasitoid model under the constant refuge effect. Appl. Math. Model. (2016). https://doi.org/10.1016/j.apm.2015.09.012

    Article  MathSciNet  MATH  Google Scholar 

  14. Din, Q., Saeed, U.: Bifurcation analysis and chaos control in a host–parasitoid model. Math. Methods Appl. Sci. 40(14), 5391–5406 (2017). https://doi.org/10.1002/mma.4395

    Article  MathSciNet  MATH  Google Scholar 

  15. Din, Q.: Qualitative analysis and chaos control in a density-dependent host–parasitoid system. Int. J. Dyn. Control. 6, 778–798 (2018)

    Article  MathSciNet  Google Scholar 

  16. Din, Q., Hussain, M.: Controlling chaos and Neimark–Sacker bifurcation in a host–parasitoid model. Asian J. Control. 21(3), 1202–1215 (2019). https://doi.org/10.1002/asjc.1809

    Article  MathSciNet  MATH  Google Scholar 

  17. Din, Q.: Controlling chaos in a discrete-time prey–predator model with Allee effects. Int. J. Dyn. Control 6, 858–872 (2018)

    Article  MathSciNet  Google Scholar 

  18. Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  19. Hassel, M.P.: Host–parasitoid population dynamics. J. Anim. Ecol. 69, 543–566 (2000)

    Article  Google Scholar 

  20. Hastings, A.: Population Biology. Springer, New York (1996)

    MATH  Google Scholar 

  21. Hassel, M.P., May, R.M.: Aggregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 43(2), 567–594 (1974)

    Article  Google Scholar 

  22. Hassell, M.P.: The Dynamics of Arthropod Predator–Pray Systems. Princeton University Press, Princeton (1974)

    Google Scholar 

  23. Hassel, M.P., Rogers, D.J.: Insect parasite response in the development of population model. J. Anim. Ecol. 41, 661–676 (1972)

    Article  Google Scholar 

  24. Hasell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969)

    Article  Google Scholar 

  25. Hasell, M.P.: Parasitism in patchy environments, IMA. J. Math. Appl. Med. Biol. 1, 123–133 (1984)

    Article  Google Scholar 

  26. Jang, S.: Alle effects in a disrete-time host–parasitoid model. J. Differ. Equ. Appl. 12, 165–181 (2006)

    Article  Google Scholar 

  27. Jang, S.: Discrete-time host–parasitoid models with Alle effect: density dependence vs. parasitism. J. Differ. Equ. Appl. 17, 525–539 (2011)

    Article  Google Scholar 

  28. Jamieson, W.T.: On the global behavior of May’s host–parasitoid model. J. Differ. Equ. Appl. 25, 583–596 (2019). https://doi.org/10.1080/10236198.2019.1613387

    Article  MATH  Google Scholar 

  29. Kapçak, S., Ufuktepe, U., Elaydi, S.: Stability of a predator–prey model with refuge effect. J. Differ. Equ. Appl. 22(7), 989–1004 (2016). https://doi.org/10.1080/10236198.2016.1170823

    Article  MathSciNet  Google Scholar 

  30. Liz, E., Herrera, A.R.: Chaos in discrete structured populations model. SIAM J. Appl. Dyn. Syst. 11(4), 1200–1214 (2012)

    Article  MathSciNet  Google Scholar 

  31. Liu, H., Zhang, K., Ye, Y., Wei, Y., Ma, M.: Dynamic complexity and bifurcation analysis of a host–parasitoid model with Allee effect and Holling type III functional response. Adv. Differ. Equ. 2019, 507 (2019). https://doi.org/10.1186/s13662-019-2430-8

    Article  MathSciNet  Google Scholar 

  32. Lauwerier, H.A., Metz, J.A.: Hopf bifurcation in host–parasitoid models. IMA J. Math. Appl. Med. Biol. 3, 191–210 (1986)

    Article  MathSciNet  Google Scholar 

  33. Liu, X., Chu, Y., Liu, Y.: Bifurcation and chaos in a host–parasitoid model with a lower bound for the host. Adv. Differ. Equ. 2018, 31 (2018)

    Article  MathSciNet  Google Scholar 

  34. Livadiotis, G., Assas, L., Dennis, B., Elaydi, S., Kwesi, E.: A discrete-time host–parasitoid model with Alle effect. J. Biol. Dyn. 9, 34–51 (2015)

    Article  MathSciNet  Google Scholar 

  35. Ma, X., Din, Q., Rafaqat, M., Javaid, N., Feng, Y.: A density-dependent host–parasitoid model with stability, bifurcation and chaos control. Mathematics 8, 536 (2020)

    Article  Google Scholar 

  36. May, R.M.: Host–parasitoid systems in patchy environments: a phenomenological model. J. Anim. Ecol. 47, 833–844 (1978)

    Article  Google Scholar 

  37. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  38. May, R.M.: Mathematical models in whaling and fisheries management. In: Oster, G.F. (ed.) Some Mathematical Questions in Biology, pp. 1–64. AMS, Providence (1980)

    Google Scholar 

  39. May, R.M., Hassell, M.P.: Population dynamics and biological control. Philos. Trans. R. Soc. Lond. B. 318, 129–169 (1988)

    Article  Google Scholar 

  40. McNar, J.N.: The effects of refuges on predator–pray interactions: a reconsideration. Theor. Popul. Biol. 29(1), 38–63 (1986). https://doi.org/10.1016/0040-5809(86)90004-3

    Article  Google Scholar 

  41. Murakami, K.: The invariant curve caused by Neimark–Sacker bifurcation. Dyn. Contin. Discrete Impulsive Syst. Ser. A Math. Anal. 9(1), 121–132 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Mills, N.J., Getz, W.M.: Modelling the biological control of insect pests: a review of host–parasitoid models. Ecol. Model. 92, 121–143 (1996)

    Article  Google Scholar 

  43. Rogers, D.J.: Random search and insect population models. J. Anim. Ecol. 41, 369–383 (1972)

    Article  Google Scholar 

  44. Tang, S., Chen, L.: Chaos in functional response host–parasitoid ecosystem models. Chaos Solitons Fractals 39, 1259–1269 (2009)

    Article  MathSciNet  Google Scholar 

  45. Thompson, W.: On the effect of random oviposition on the action of entomophagous parasites as agents of natural control. Parasitology 21, 180–188 (1929)

    Article  Google Scholar 

  46. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  47. Wu, D., Zhao, H.: Global qualitative analysis of a discrete host-parasitoid model with refuge and strong Allee effects. Math. Methods. Appl. Sci. 41, 2039–2062 (2018). https://doi.org/10.1002/mma.4731

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to S. Kalabušić.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalabušić, S., Drino, D. & Pilav, E. Global Behavior and Bifurcation in a Class of Host–Parasitoid Models with a Constant Host Refuge. Qual. Theory Dyn. Syst. 19, 66 (2020). https://doi.org/10.1007/s12346-020-00403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00403-3

Keywords

Mathematics Subject Classification

Navigation