Skip to main content
Log in

Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Considering the variability of vaccine efficacy and infection conversion rate, a mathematical model for vector-borne disease transmission by incorporating age of vaccination and infection is proposed, where, the latency of disease in the host population, general nonlinear incidence rate, and vaccination effectiveness are also formulated to analyze their effects for the spread of the vector-borne. The existence and local stability of steady states, the uniform persistence and asymptotic smoothness of this model are studied. Moreover, the exact expression of the basic reproduction number is derived. By applying the fluctuation lemma and the suitable Lyapunov functional, the global dynamics of steady states are investigated. That is, if the basic reproduction number is less than 1, the disease-free steady state is globally asymptomatically stable, and the disease dies out; if the basic reproduction number is greater than 1, the endemic steady state is globally asymptomatically stable, and the disease becomes endemic. Finally, numerical simulations are performed to explain the main theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Norsakran, S., Perng, G.C.: Alternate hypotheis on the pathogenesis of dengue hemorgic fever (DHF)/dengue shock syndrome (DSS) in the dengue us infection. Exp. Biol. Med. 233, 401–408 (2008)

    Google Scholar 

  2. Esteva, L., Vargas, C.: A model for dengue disease with variable human population. J. Math. Biol. 38(3), 220–240 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Derouich, M., Boutayeb, A., Twizell, E.H.: A model of dengue fever. BioMed. Eng. OnLine 2–4 (2003)

  4. Cai, L.M., Guo, S.M., Li, X.Z.: Global dynamics of a dengue epidemic mathematics model. Chaos Soliton. Fract. 42, 2297–2304 (2009)

    MATH  Google Scholar 

  5. Amaku, M., Coutinho, F.A.B., Raimundo, S.M.: A comparative analysis of the relative efficacy of vector-control strategies against dengue fever. Bull. Math. Biol. 76, 697–717 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chan, M., Johansson, M.A.: The incubation periods of dengue viruses. PLoS ONE 7(11), e50972 (2012)

    Google Scholar 

  7. Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150(2), 131–151 (1998)

    MATH  Google Scholar 

  8. Feng, Z.L., Velasco-Hernandez, J.X.: Competitive excusion in a vector-host model for the dengue fever. J. Math. Biol. 35, 523–544 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Focks, D.A., Brenner, R.J., Hayes, J.: Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am. J. Trop. Med. Hyg. 62(1), 11–18 (2000)

    Google Scholar 

  10. Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A.: Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE 9(3), e89783 (2014)

    Google Scholar 

  11. Sahu, G.P., Dhar, J.: Analysis of an SVEIS epidemic model with partial temporary immunity and saturaton incidence rate. Appl. Math. Model. 36, 908–923 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Tang, B., Xiao, Y.N., Tang, S.Y.: Modelling weekly vector control against dengue in the Guangdong Province of China. J. Theor. Biol. 410, 65–76 (2016)

    MATH  Google Scholar 

  13. Yang, C.X., Nie, L.F.: The effect of vector control strategy against dengue transmission between mosquitoes and human. Electron. J. Qual. Theory Differ. Equ. 17, 1–27 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Li, J.Q., Yang, Y.L., Zhou, Y.C.: Global stability of an epidemic model with latent stage and vaccination. Nonlinear Anal. Real World Appl. 12, 2163–2173 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Xiao, Y.N., Tang, S.Y.: Dynamics of infection with nonlinear incidence in a simple vaccination model. Nonlinear Anal. Real World Appl. 11, 4154–4163 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Martcheva, M.: Introduction to Mathematical Epidemiology. Springer, New York (2015)

    MATH  Google Scholar 

  17. Hoppensteadt, F.: An age-dependent epidemic model. J. Franklin Inst. 297(5), 325–338 (1974)

    MATH  Google Scholar 

  18. Zou, L., Ruan, S.G., Zhang, W.N.: An age-structureed model for the transmission dynamics of Hepatitis B. SIAM J. Appl. Math. 70, 3121–3139 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Zaman, G., Khan, A.: Dynamical aspects of an age-structured SIR endemic model. Comput. Math. Appl. 72, 1690–1702 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Browne, C.J., Pilyugin, S.S.: Global analysis of age-structured within-host virus model. Discrete Contin. Dyn. Syst. Ser. B 18(8), 1999–2017 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Cao, B., Huo, H.F., Xiang, H.: Global stability of an age-structure epidemic model with imperfect vaccination and relapse. Phys. A 486, 638–655 (2017)

    MathSciNet  Google Scholar 

  22. Duan, X.C., Yuan, S.L., Li, X.Z.: Global stability of an SVIR model with age of vaccination. Appl. Math. Comput. 226, 528–540 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Li, Y.K., Teng, Z.D., Hu, C.: Global stability of an epidemic model with age-dependent vaccination, latent and relapse. Chaos Soliton. Fract. 105, 195–207 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Liu, K.H., Lou, Y.J., Wu, J.H.: Analysis of an age structured model for tick populations subject to seasonal effects. J. Differ. Equ. 263, 2078–2112 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Magal, P.: Compact attractors for time-periodic age-structured population models. Electron. J. Differ. Equ. 65, 1–35 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Magal, P., Zhao, X.Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37(1), 251–275 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Xu, R.: Global dynamics of an epidemiological model with age of infection and disease relapse. J. Biol. Dyn. 12(1), 118–145 (2018)

    MathSciNet  Google Scholar 

  28. Yang, J.Y., Chen, Y.M.: Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate. J. Biol. Dyn. 12(1), 789–816 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Feng, W.J., Cai, L.M., Liu, K.H.: Dynamics of a dengue epidemics model with class-age structure. Int. J. Biomath. 8, 1–23 (2017)

    MathSciNet  Google Scholar 

  30. Wang, X., Chen, Y.M., Liu, S.Q.: Global dynamics of a vector-borne disease with infection ages and general incidence rates. Comput. Appl. Math. 37, 4055–4080 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Hale, L.K.: Functional Differential Equations. Springer, Berlin (1971)

    MATH  Google Scholar 

  32. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  33. Hale, J.K., Waltman, P.: Persistence infinite-dimensional system. SIAM J. Math. Anal. 20(2), 388–395 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Hirsch, W.M., Hanisch, H., Gabriel, J.P.: Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38, 733–753 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Iannelli, M.: Mathematical Theory of Age-structured Population Dynamics. Applied Mathematics Monographs, Vol. 7. Giardini, Pisa: Comitato Nazionale per le Scienze Matematiche. Consiglio Nazionale delle Ricerche (1995)

  36. Focks, D.A., Haile, D.G., Daniels, E.: Dynamics life table model for Aedes aegypti (Diptera:Culicidae): analysis of the literature and model development. J. Med. Entomol. 30(6), 1003–1017 (1993)

    Google Scholar 

  37. Harrington, L.C., Buonaccorsi, J.P., Edman, J.D.: Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. J. Med. Entomol. 38(4), 537–547 (2001)

    Google Scholar 

  38. Maciel-de-Freitas, R., Marques, W.A., Peres, R.C.: Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons. Mem. Inst. Oswaldo Cruz 102(4), 489–496 (2007)

    Google Scholar 

  39. Magal, P., McCluskey, C.C., Webb, G.F.: Lyapunov functional and global asymptotic stability for an infection-age model. Appl. Anal. 89(7), 1109–1140 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Melnik, A.V., Korobeinikov, A.: Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Math. Biosci. Eng. 10(2), 369–378 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Lu, M., Huang, J., Ruan, S., Yu, P.: Bifurcation analysis of an SIRS epidemic model with a generalized nonmonotone and saturated incidence rate. J. Differ. Equ. 267, 1859–1898 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the editors and the anonymous referees for their careful reading and helpful comments which led to great improvement of our paper. This research is partially supported by the National Natural Science Foundation of China (Grant Nos. 11961066 and 11771373), the Scientific Research Programmes of Colleges in Xinjiang (Grant No. XJEDU2018I001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Fei Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Nie, LF. Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate. Qual. Theory Dyn. Syst. 19, 72 (2020). https://doi.org/10.1007/s12346-020-00407-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00407-z

Keywords

Mathematics Subject Classification

Navigation