Skip to main content
Log in

Applications of the Moser’s Twist Theorem to Some Impulsive Differential Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

By KAM theorem, we prove that all solutions of Duffing equations of periodic coefficients undergoing suitable impulses are bounded for all time and that there are many quasi-periodic solutions clustering at infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moser, J.: On invariant curves of aera-preserving mapping of annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. 2, 1–20 (1962)

    MATH  Google Scholar 

  2. Moser, J.: Stable and Random Motion in Dynamic Systems, Annals of Mathematics Studies. Princeton University Press, Princeton (1973)

    Google Scholar 

  3. Littlewood, J.: Some Problems in Real and Complex Analysis. Heath, Lexington (1968)

    MATH  Google Scholar 

  4. Morris, G.: A case of boundedness of Littlewood’s problem on oscillatory differential equations. Bull. Aust. Math. Soc. 14, 71–93 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Dieckerhoff, R., Zehnder, E.: Boundedness of solutions via the twist theorem. Ann. Sc. Norm. Super. Pisa 14(1), 79–95 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Laederich, S., Levi, M.: Invariant curves and time-dependent potential. Ergod. Theory Dyn. Syst. 11, 365–378 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Liu, B.: Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem. J. Differ. Equ. 79, 304–315 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Liu, B.: Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math. Sin. (N.S.) 8, 91–98 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Wang, Y.: Unboundedness in a Duffing equation with polynomial potentials. J. Differ. Equ. 160(2), 467–479 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Jiao, L., Piao, D., Wang, Y.: Boundedness for the general semilinear Duffing equations via the twist theorem. J. Differ. Equ. 252, 91–113 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Peng, Y., Piao, D., Wang, Y.: Longtime closeness estimates for bounded and unbounded solutions of non-recurrent Duffing equations with polynomial potentials. J. Differ. Equ. 268, 513–540 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Yuan, X.: Invariant tori of Duffing-type equations. Adv. Math. (China) 24, 375–376 (1995)

    MATH  Google Scholar 

  13. Yuan, X.: Invariant tori of Duffing-type equations. J. Differ. Equ. 142(2), 231–262 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Yuan, X.: Lagrange stability for Duffing-type equations. J. Differ. Equ. 160(1), 94–117 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Yuan, X.: Boundedness of solutions for Duffing equation with low regularity in time. Chin. Ann. Math. Ser. B 38(5), 1037–1046 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Levi, M.: Quasiperiodic motions in superquadratic time periodic potentials. Commun. Math. Phys. 143(1), 43–83 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, F., Shen, J., Zeng, Y.: Applications of the Poincar\(\acute{e}\)–Birkhoff theorem to impulsive Duffing equations at resonance. Nonlinear Anal. Real World Appl. 13, 1292–1305 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Nieto, J., Uzal, J.: Positive periodic solutions for a first order singular ordinary differential equation generated by impulses. Qual. Theory Dyn. Syst. 17, 637–650 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Nieto, J., Uzal, J.: Pulse positive periodic solutions for some classes of singular nonlinearities. Appl. Math. Lett. 86, 134–140 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Wang, C., Yang, X., Chen, X.: Affine-periodic solutions for impulsive differential systems. Qual. Theory Dyn. Syst. 19, 1–22 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Qian, D., Chen, L., Sun, X.: Periodic solutions of superlinear impulsive differential equations: a geometric approach. J. Differ. Equ. 258, 3088–3106 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Akhmet, M.: Principles of Discontinuous Dynamical Systems. Springer, New York (2010)

    MATH  Google Scholar 

  23. Dong, Y.: Sublinear impulse effects and solvability of boundary value problems for differential equations with impulses. J. Math. Anal. Appl. 264, 32–48 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Google Scholar 

  25. Nieto, J.: Basic theory for nonresonace impulsive periodic problems of first order. J. Math. Anal. Appl. 205, 423–433 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Nieto, J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10, 680–690 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Sun, J., Chen, H., Nieto, J.: Infinitely many solutions for second-order Hamiltonian system with impulsive effects. Math. Comput. Model. 54, 544–555 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Niu, Y., Li, X.: Boundedness of solutions in impulsive Duffing equations with polynomial potentials and \(C^1\) time dependent coefficients (2017). arXiv:1706.06460v1 [math.DS]

  29. Shen, J., Chen, L., Yuan, X.: Lagrange stability for impulsive Duffing equations. J. Differ. Equ. 266, 6924–6962 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Niu, Y., Li, X.: An application of Moser’s twist theorem to superlinear impulsive differential equations. Discrete Contin. Dyn. Syst. 39, 431–445 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Russman, H.: Uber invariante Kurven differenzierbarer Abbildungen eines Kreisringes. Nachr. Akad. Wiss. Gottingen Math. Phys. 2, 67–105 (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Nos. 11771093 and 11790272)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L. Applications of the Moser’s Twist Theorem to Some Impulsive Differential Equations. Qual. Theory Dyn. Syst. 19, 75 (2020). https://doi.org/10.1007/s12346-020-00413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00413-1

Keywords

Mathematics Subject Classification

Navigation