Skip to main content
Log in

Limit Cycle Bifurcations from a Quadratic Center with Two Switching Lines

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study limit cycle bifurcations for a differential system with two switching lines by using Picard–Fuchs equation. We obtain a detailed expression of the corresponding first order Melnikov function which can be used to get the upper bound of the number of limit cycles. It is worth noting that we greatly simplify the computation. Our results also show that the number of switching lines has essential impact on the number of limit cycles bifurcating from a period annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buica, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bujac, C., Llibre, J., Vulpe, N.: First integrals and phase portraits of planar polynomial differential cubic systems with the maximum number of invariant straight lines. Qual. Theory Dyn. Syst. 15, 327–348 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cen, X., Li, S., Zhao, Y.: On the number of limit cycles for a class of discontinuous quadratic differetnial systems. J. Math. Anal. Appl. 449, 314–342 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, H., Li, D., Xie, J., Yue, Y.: Limit cycles in planar continuous piecewise linear systems. Commun. Nonlinear Sci. Numer. Simul. 47, 438–454 (2017)

    Article  MathSciNet  Google Scholar 

  5. di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  6. Dong, G., Liu, C.: Note on limit cycles for \(m\)-piecewise discontinuous polynomial Liénard differential equations. Z. Angew. Math. Phys. 68, 97 (2017)

    Article  Google Scholar 

  7. Gao, Y., Peng, L., Liu, C.: Bifurcation of limit cycles from a class of piecewise smooth systems with two vertical straight lines of singularity. Int. J. Bifurc. Chaos 27, 1750157 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gentes, M.: Center conditions and limit cycles for the perturbation of an elliptic sector. Bull. Sci. Math. 133, 597–643 (2009)

    Article  MathSciNet  Google Scholar 

  9. Han, M.: On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput. 7, 788–794 (2017)

    MathSciNet  Google Scholar 

  10. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)

    MathSciNet  Google Scholar 

  11. Hu, N., Du, Z.: Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems. Commun. Nonlinear Sci. Numer. Simul. 18, 3436–3448 (2013)

    Article  MathSciNet  Google Scholar 

  12. Han, M., Sun, H., Balanov, Z.: Upper estimates for the number of periodic solutions to multi-dimensional systems. J. Differ. Equ. 266, 8281–8293 (2019)

    Article  MathSciNet  Google Scholar 

  13. Itikawa, J., Llibre, J., Mereu, A.C., Oliveira, R.: Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete Contin. Dyn. Syst. Ser. B 22, 3259–3272 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Krivan, V.: On the Gause predator-prey model with a refuge: a fresh look at the history. J. Theor. Biol. 274, 67–73 (2011)

    Article  MathSciNet  Google Scholar 

  15. Li, S., Liu, C.: A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system. J. Math. Anal. Appl. 428, 1354–1367 (2015)

    Article  MathSciNet  Google Scholar 

  16. Liang, F., Han, M., Romanovski, V.: Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop. Nonlinear Anal. 75, 4355–4374 (2012)

    Article  MathSciNet  Google Scholar 

  17. Liu, X., Han, M.: Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20, 1379–1390 (2010)

    Article  MathSciNet  Google Scholar 

  18. Llibre, J., Mereu, A.: Limit cycles for discontinuous quadratic differetnial systems. J. Math. Anal. Appl. 413, 763–775 (2014)

    Article  MathSciNet  Google Scholar 

  19. Llibre, J., Mereu, A., Novaes, D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258, 4007–4032 (2015)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Yuan, L., Du, Z.: Bifurcation of nonhyperbolic limit cycles in piecewise smooth planar systems with finitely many zones. Int. J. Bifurc. Chaos 27, 1750162 (2017)

    Article  MathSciNet  Google Scholar 

  21. Shen, J., Du, Z.: Heteroclinic bifurcation in a class of planar piecewise smooth systems with multiple zones. Z. Angew. Math. Phys. 67, 42 (2016)

    Article  MathSciNet  Google Scholar 

  22. Sanders, J., Vehrulst, F.: Averaging Method in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59. Springer, Berlin (1985)

    Book  Google Scholar 

  23. Teixeira, M.: Perturbation theory for non-smooth systems. In: Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    Chapter  Google Scholar 

  24. Wang, Y., Han, M., Constantinescu, D.: On the limit cycles of perturbed discontinuous planar systems with 4 switching lines. Chaos Solitons Fractals 83, 158–177 (2016)

    Article  MathSciNet  Google Scholar 

  25. Xiong, Y.: Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters. Nonlinear Anal. Real World Appl. 41, 384–400 (2018)

    Article  MathSciNet  Google Scholar 

  26. Xiong, Y., Hu, J.: Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points. J. Math. Anal. Appl. 474, 194–218 (2019)

    Article  MathSciNet  Google Scholar 

  27. Xiong, Y., Han, M.: On the limit cycle bifurcation of a polynomial system from a global center. Anal. Appl. 12, 251–268 (2014)

    Article  MathSciNet  Google Scholar 

  28. Yang, J., Zhao, L.: Limit cycle bifurcations for piecewise smooth Hamiltonian systems with a generalized eye-figure loop. Int. J. Bifurc. Chaos 26, 1650204 (2016). (14pages)

    Article  MathSciNet  Google Scholar 

  29. Yang, J., Zhao, L.: Bounding the number of limit cycles of discontinuous differential systems by using Picard–Fuchs equations. J. Differ. Equ. 264, 5734–5757 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yang, J., Zhao, L.: Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete Contin. Dyn. Syst. Ser. B 22, 2417–2425 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Zou, C., Yang, J.: Piecewise linear differential system with a center-saddle type singularity. J. Math. Anal. Appl. 459, 453–463 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Supported by National Natural Science Foundation of China (11701306, 11671040, 11601250), Construction of First-class Disciplines of Higher Education of Ningxia (Pedagogy)(NXYLXK2017B11), Young Top-notch Talent of Ningxia, Ningxia Natural Science Foundation of China (2019AAC03247) and Key Program of Ningxia Normal University (NXSFZDA1901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J. Limit Cycle Bifurcations from a Quadratic Center with Two Switching Lines. Qual. Theory Dyn. Syst. 19, 21 (2020). https://doi.org/10.1007/s12346-020-00374-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00374-5

Keywords

Navigation