Skip to main content
Log in

The Geometrical Demonstration of the Order of Resonant Saddle Points in \({\mathbb {C}}^2\)

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Here we investigate the Minkowski box dimension of complex integral curves of the vector fields near resonant saddles in \({\mathbb {C}}^2\). The results provide the geometrical explanation of the order of the saddle points and a quantitative description for the non-integrability via monodromy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Theory of Bifurcations of Dynamic Systems on a Plane. Wiley, New York (1973)

    Google Scholar 

  2. Arnold, V.I., Ilyashenko, Y.S.: Dynamical systems-I, ordinary differential equations. In: Encyclopaedia of Mathematical Sciences, Vol. 1, Springer, Heidelberg (1988)

  3. Broer, H.W.: Normal forms in perturbation theory. In: Mathematics of Complexity and Dynamical Systems, pp. 1152–1171 (2011)

    Chapter  Google Scholar 

  4. Li, W., Llibre, J., Zhang, X.: Planar analytic vector fields with generalized rational first integrals. Bull. Sci. Math. 125, 341–361 (2001)

    Article  MathSciNet  Google Scholar 

  5. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and co., San Francisco (1982)

    MATH  Google Scholar 

  6. Martynchuk, N., Broer, H.W., Efstathiou, K.: Hamiltonian monodromy and Morse theory. arXiv:1901.00705

  7. Poincaré, H.: Sur lintgration des équations différentielles du premier ordre et du premier degr I. Rendiconti del Circolo Matematico di Palermo 5, 161–191 (1891)

    Article  Google Scholar 

  8. Poincaré, H.: Sur lintgration des équations différentielles du premier ordre et du premier degr II. Rendiconti del Circolo Matematico di Palermo 11, 193–239 (1897)

    Article  Google Scholar 

  9. Roussarie, R.: On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields. Bol. Soc. Bras. Math. 17, 67–101 (1986)

    Article  MathSciNet  Google Scholar 

  10. Stolovitch, L.: Smooth Gevrey normal forms of vector fields near a fixed point. Ann. Inst. Fourier 63, 241–267 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wu, H.: Gevrey smooth topology is proper to detect normalization under Siegel type small divisor conditions. Math. Z. 284, 1223–1243 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zoladek, H.: The Monodromy Group. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  13. Z̆ubrinić, D., Z̆ubrinić, V.: Box dimension of spiral trajectories of some vector fields in \({\mathbb{R}}^3\). Qual. Theory Dyn. Syst. 6, 251–272 (2005)

    Article  MathSciNet  Google Scholar 

  14. Z̆ubrinić, D., Z̆ubrinić, V.: Fractal analysis of spiral trajectories of some planar vector fields. Bull. Sci. Math. 129, 457–485 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by NSF of China (No. 11571072) and partially supported by NSF of China (No. 11871041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, S. The Geometrical Demonstration of the Order of Resonant Saddle Points in \({\mathbb {C}}^2\). Qual. Theory Dyn. Syst. 19, 27 (2020). https://doi.org/10.1007/s12346-020-00370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00370-9

Keywords

Mathematics Subject Classification

Navigation