Skip to main content
Log in

Poincaré Compactification for Non-polynomial Vector Fields

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this work a theorical framework to apply the Poincaré compactification technique to locally Lipschitz continuous vector fields is developed. It is proved that these vectors fields are compactifiable in the n-dimensional sphere, though the compactified vector field can be identically null in the equator. Moreover, for a fixed projection to the hemisphere, all the compactifications of a vector field, which are not identically null on the equator are equivalent. Also, the conditions determining the invariance of the equator for the compactified vector field are obtained. Up to the knowledge of the authors, this is the first time that the Poincaré compactification of locally Lipschitz continuous vector fields is studied. These results are illustrated applying them to some families of vector fields, like polynomial vector fields, vector fields defined as a sum of homogeneous functions and vector fields defined by piecewise linear functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andronov, A.A., Leontovitch, E.A., Gordon y, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamic Systems. Wiley, New York (1973)

    Google Scholar 

  2. Andronov, A.A., Vitt, A., Khaikin, S.: Theory of Oscillators. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  3. Azamov, A., Suvanov, S., Tilavov, A.: Studying of behavior at infinity of vector fields on Poincaré sphere: revisited. Qual. Theory. Dyn. Syst. 15(1), 211–220 (2016)

    Article  MathSciNet  Google Scholar 

  4. Coll, B., Gasull, A., Prohens, R.: Differential equations defined by the sum of two quasi-homogeneous vector fields. Can. J. Math. 49(2), 212–231 (1997). https://doi.org/10.4153/CJM-1997-011-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Delgado, J., Lacomba, E.A., Llibre, J., Pérez, E.: Poincaré compactification of Hamiltonian polynomial vector fields. In: Dumas, H.S., Meyer, K.S., Schmidt, D.S. (eds.) “Hamiltonian Dynamical Systems”. The IMA Volumes in Mathematics and its Applications, vol. 63. Springer, New York (1995)

    Google Scholar 

  6. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Applied Mathematical Sciences Book Series (AMS, vol. 163). Springer, Berlin (2007)

  7. Elias, U., Gingold, H.: Critical points at infinity and blow up of solutions of autonomous polynomial differential systems via compactification. J. Math. Anal. Appl. 318–1, 305–322 (2006)

    Article  MathSciNet  Google Scholar 

  8. García, A., Pérez-Chavela, E., Susin, A.: A generalization of the Poincaré compactification. Arch. Ration. Mech. Anal. 179, 285–302 (2006)

    Article  MathSciNet  Google Scholar 

  9. Li, S., Llibre, J.: Phase portraits of continuous piecewise linear Lienard differential systems with three zones. Chaos Solitons Fractals 120, 149–157 (2019). https://doi.org/10.1016/j.chaos.2018.12.037

    Article  MathSciNet  Google Scholar 

  10. Llibre, J., Teruel, A.E.: Introduction to the Qualitative Theory of Differential Systems: Planar, Symmetric and Continuous Piecewise Linear Systems. Birkhäuser Advanced Texts Basler Lehrbücher, Basel. Springer, Basel (2014)

    Book  Google Scholar 

  11. Martínez-Jeraldo, N., Aguirre, P.: Allee effect acting on the prey species in a Leslie–Gower predation model. Nonlinear Anal. Real World Appl. 45, 895–917 (2019)

    Article  MathSciNet  Google Scholar 

  12. Matsue, K.: On blow-up solutions of differential equations with Poincaré-type compactifications. SIAM J. Appl. Dyn. Syst. 17–3, 2249–2288 (2018)

    Article  MathSciNet  Google Scholar 

  13. Pessoa, C., Sotomayor, J.: Stable piecewise polynomial vector fields. Electron. J. Differ. Equ. 165, 1–15 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Pessoa, C., Tonon, D.J.: Piecewise smooth vector fields in \({\mathbb{R}}^3\) at infinity. J. Math. Anal. Appl. 427–2, 841–855 (2015)

    Article  Google Scholar 

  15. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle. Oeuvres T.1. J. Math. Pures Appl. 7, 375–422 (1881)

    MATH  Google Scholar 

  16. Priyadarshi, A., Banerjee, S., Gakkhar, S.: Geometry of the Poincaré compactification of a four-dimensional food-web system. Appl. Math. Comput. 226, 229–237 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Vidal, C., Gómez, P.: An extension of the Poincaré compactification and a geometric interpretation. Proyecciones 22–3, 161–180 (2003) (Universidad Católica del Norte. Antofagasta - Chile)

Download references

Acknowledgements

The three authors are supported by Ministerio de Economía y Competitividad through the project MTM2017-83568-P (AEI/ERDF, EU). The first and second authors are also partially supported by the Junta de Extremadura/FEDER Grants Numbers GR18023 and IB18023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio E. Teruel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, J.L., Fernández, M. & Teruel, A.E. Poincaré Compactification for Non-polynomial Vector Fields. Qual. Theory Dyn. Syst. 19, 50 (2020). https://doi.org/10.1007/s12346-020-00386-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00386-1

Keywords

Navigation