Skip to main content
Log in

Validated Numerics for Continuation and Bifurcation of Connecting Orbits of Maps

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The present work develops validated numerical methods for analyzing continuous branches of connecting orbits—as well as their bifurcations—in one parameter families of discrete time dynamical systems. We use the method of projected boundaries to reduce the connecting orbit problem to a finite dimensional zero finding problem for a high dimensional map. We refer to this map as the connecting orbit operator. We study one parameter branches of zeros for the connecting orbit operator using existing methods of computer assisted proof know as the radii-polynomial approach and validated continuation. The local stable/unstable manifolds of the fixed points are analyzed using validated numerical methods based on the parameterization method. The validated branches of zeros found using our argument correspond to continuous families of transverse connecting orbits for the original dynamical system. Validation of a saddle node bifurcations for the connecting orbit operator correspond to a proof of existence for a tangency. We illustrate the implementation of our method for the Hénon map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arai, Z.: On hyperbolic plateaus of the Hénon map. Exp. Math. 16(2), 181–188 (2007)

    Article  MATH  Google Scholar 

  2. Arai, Z.: On loops in the hyperbolic locus of the complex Hénon map and their monodromies. Phys. D 334, 133–140 (2016)

    Article  MathSciNet  Google Scholar 

  3. Arai, Z., Mischaikow, K.: Rigorous computations of homoclinic tangencies. SIAM J. Appl. Dyn. Syst. 5(2), 280–292 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arioli, G., Koch, H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto–Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beyn, W.-J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10(3), 379–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beyn, W.-J., Kleinkauf, J.-M.: Numerical approximation of homoclinic chaos. Numer. Algorithms 14(1–3), 25–53 (1997). Dynamical numerical analysis (Atlanta, GA, 1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beyn, W.-J., Kleinkauf, J.-M.: The numerical computation of homoclinic orbits for maps. SIAM J. Numer. Anal. 34(3), 1207–1236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. I: manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52, 283–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II: regularity with respect to parameters. Indiana Univ. Math. J. 52, 329–360 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III: overview and applications. J. Differ. Equ. 218, 445–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Capiński, M.J., Mireles James, J.D.: Validated computation of heteroclinic sets. SIAM J. Appl. Dyn. Syst. 16(1), 375–409 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chicone, C.: Ordinary Differential Equations with Applications, vol. 34, 2nd edn. Springer, New York (2006). Texts in Applied Mathematics

    MATH  Google Scholar 

  13. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doedel, E.J., Friedman, M.J.: Numerical computation of heteroclinic orbits. J. Comput. Appl. Math. 26(1–2), 155–170 (1989). Continuation techniques and bifurcation problems

    Article  MathSciNet  MATH  Google Scholar 

  15. Doedel, E.J., Kooi, B.W., van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs. I. Point-to-cycle connections. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18(7), 1889–1903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Doedel, E.J., Kooi, B.W., Van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs. II. Cycle-to-cycle connections. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19(1), 159–169 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eckmann, J.-P., Koch, H., Wittwer, P.: A computer-assisted proof of universality for area-preserving maps. Mem. Am. Math. Soc. 47(289), vi+122 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Gonzalez, J.L., Mireles James, J.D.: High-order parameterization of stable/unstable manifolds for long periodic orbits of maps. SIAM J. Appl. Dyn. Syst. 16(3), 1748–1795 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haro, À., Canadell, M., Figueras, J.-L., Luque, A., Mondelo, J.-M.: The parameterization method for invariant manifolds, volume 195 of Applied Mathematical Sciences. Springer, [Cham] (2016). From rigorous results to effective computations

  20. Haro, À., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst. Ser. B 6(6), 1261–1300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results. J. Differ. Equ. 228(2), 530–579 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity. SIAM J. Appl. Dyn. Syst. 6(1), 142–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Koch, H., Schenkel, A., Wittwer, P.: Computer-assisted proofs in analysis and programming in logic: a case study. SIAM Rev. 38(4), 565–604 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lanford III, O.E.: Computer-assisted proofs in analysis. In: Proceedings of the international congress of mathematicians, vol. 1, 2 (Berkeley, Calif., 1986), pp. 1385–1394. Amer. Math. Soc., Providence, RI (1987)

  25. Lanford III, O.E.: Computer-assisted proofs in analysis. Phys. A 124(1–3), 465–470 (1984). Mathematical physics, VII (Boulder, Colo., 1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lessard, J.-P.: Delay differential equations and continuation. (to appear in AMS Proceedings of Symposia in Applied Mathematics), page http://archimede.mat.ulaval.ca/jplessard/AMSnotes/ (2018)

  27. Lessard, J.-P.: Rigorous verification of saddle-node bifurcations in ODEs. Indag. Math. (N.S.) 27(4), 1013–1026 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lessard, J.-P., Mireles James, J.D., Reinhardt, C.: Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields. J. Dyn. Differ. Equ. 26(2), 267–313 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lohner, R.J.: Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems. In: Computational ordinary differential equations (London, 1989), vol. 39 of Inst. Math. Appl. Conf. Ser. New Ser., pp. 425–435. Oxford University Press, New York (1992)

  30. Mireles James, J.D.: Computer assisted error bounds for linear approximation of (un)stable manifolds and rigorous validation of higher dimensional transverse connecting orbits. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 1102–1133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mireles James, J.D.: Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds. Indag. Math. (N.S.) 26(1), 225–265 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mireles James, J.D., Mischaikow, K.: Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps. SIAM J. Appl. Dyn. Syst. 12(2), 957–1006 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sander, E., Wanner, T.: Validated saddle-node bifurcations and applications to lattice dynamical systems. SIAM J. Appl. Dyn. Syst. 15(3), 1690–1733 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tucker, W.: Validated numerics for pedestrians. In: European Congress of Mathematics, pp. 851–860. Eur. Math. Soc., Zürich (2005)

  35. Tucker, W.: Validated Numerics. Princeton University Press, Princeton (2011). A short introduction to rigorous computations

    Book  MATH  Google Scholar 

  36. van den Berg, J.B., Lessard, J.-P.: Rigorous numerics in dynamics. Not. Am. Math. Soc. 62(9), 1057–1061 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. van den Berg, J.B., Mireles James, J.D.: Parameterization of slow-stable manifolds and their invariant vector bundles: theory and numerical implementation. Discrete Contin. Dyn. Syst. 36(9), 4637–4664 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. van den Berg, J.B., Lessard, J.-P., Mischaikow, K.: Global smooth solution curves using rigorous branch following. Math. Comput. 79(271), 1565–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. van den Berg, J.B., Lessard, J.P., Breden, M., Murray, M.: Contunuation of homoclinic orbits in the suspension bridge equation: a computer-assisted proof. (To appear in the Journal of Differential Equations), (2018)

  40. Wanner, T.: Computer-assisted equilibrium validation for the dibolck copolymer model. Discrete Contin. Dyn. Syst. 37(2), 1075–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zgliczynski, P.: \(C^1\) Lohner algorithm. Found. Comput. Math. 2(4), 429–465 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by Division of Mathematical Sciences (Grant No. DMS 1318172), and Alfred P. Sloan Foundation (Grant No. G-2016-7320).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Mireles James.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, R., Mireles James, J.D. Validated Numerics for Continuation and Bifurcation of Connecting Orbits of Maps. Qual. Theory Dyn. Syst. 18, 107–137 (2019). https://doi.org/10.1007/s12346-018-0279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-018-0279-y

Keywords

Navigation