Skip to main content
Log in

Non Hyperbolic Solenoidal Thick Bony Attractors

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates the geometric structures of non-uniformly hyperbolic attractors of a certain class of skew products. We construct an open set of skew products with the fiber an interval over a linear expanding circle map such that any skew product belonging to this set admits a non-uniformly hyperbolic solenoidal attractor for which the following dichotomy is ascertained. This attractor is either the image of a continuous invariant graph under a semi conjugacy with nonempty interior, the so-called massive attractor, or a thick generalized bony attractor. Here, a generalized bony attractor is, roughly speaking, the image of a bony graph attractor under a semi conjugacy. Also, an attractor is thick if it has positive but not full Lebesgue measure. Moreover, in both cases, the attractors are mixing. In our construction, the contraction in the fiber is non-uniform and hence it is specified in terms of fiber Lyapunov exponents. Furthermore, we provide some related results on the ergodic properties of attracting graphs and stability results for such graphs under deterministic perturbations. In particular, we show that there exists an invariant ergodic SRB measure whose support is contained in that attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, J., Pinheiro, V.: Topological structure of partially hyperbolic sets with positive volume. Trans. Am. Math. Soc. 360(10), 5551–5569 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anzai, H.: Ergodic skew product transformations on the torus. Osaka Math. J. 3, 83–99 (1951)

    MathSciNet  MATH  Google Scholar 

  3. Arnold, L., Crauel, H.: Iterated function systems and multiplicative ergodic theory. In: Pinsky, M.A., Wihstutz, V. (eds.) Diffusion Processes and Related Problems in Analysis, vol. II, pp. 283–305. Birkhauser, Boston (1992)

    Google Scholar 

  4. Avila, A., Gouezel, S., Tsujii, M.: Smoothness of solenoidal attractors. Discrete Contin. Dyn. Syst. 15(1), 21–35 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bielecki, A.: Iterated function systems analogues on compact metric spaces and their attractors. Univ. Iagel. Acta Math. 32, 187–192 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  7. Bowen, R.: A horseshoe with positive measure. Invent. Math. 29, 203–204 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Broomhead, D., Hadjiloucas, D., Nicol, M.: Random and deterministic perturbation of a class of skew-product systems. Dyn. Stab. Syst. 14, 115–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  10. Campbell, K.M.: Observational noise in skew product systems. Phys. D 107, 43–56 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campbell, K.M., Davies, M.E.: The existence of inertial functions in skew product systems. Nonlinearity 9, 801–817 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crauel, H.: Extremal exponents of random dynamical systems do not vanish. J. Dyn. Differ. Equ. 2, 245–291 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davies, M.E., Campbell, K.M.: Linear recursive filters and nonlinear dynamics. Nonlinearity 9, 487–499 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diaz, L.J., Gelfert, K.: Porcupine-like horseshoes: transitivity, Lyapunov spectrum, and phase transitions. Fund. Math. 216(1), 55–100 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edalat, A.: Power domains and iterated function systems. Inf. Comput. 124, 182–197 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ehsani, A., Fakhari, A., Ghane, F.H., Zaj, M.: Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus. Discrete Continuous Dyn. Syst. 38(4), 1777–1807 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elton, J.H.: An ergodic theorem for iterated maps. Ergod. Theory Dyn. Syst. 7, 481–488 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elton, J.H.: A multiplicative ergodic theorem for Lipschitz maps. Stoch. Process. Appl. 34, 39–47 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gorodetski, A., Ilyashenko, Y.: Certain new robust properties of invariant sets and attractors of dynamical systems. Funct. Anal. Appl. 33(2), 95–100 (1990)

    Article  Google Scholar 

  21. Hirsch, M., Pugh, C.: Stable manifolds and hyperbolic sets. Bull. Am. Math. Soc. 75, 149–152 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Mathematics, vol. 583. Springer, Berlin (1977)

    Book  Google Scholar 

  23. Hunt, B.R., Ott, E., Yorke, J.A.: Fractal dimensions of chaotic saddles of dynamical systems. Phys. Rev. E 54, 4819–4823 (1996)

    Article  Google Scholar 

  24. Hunt, B.R., Ott, E., Yorke, J.A.: Differentiable generalized synchronization of chaos. Phys. Rev. E 55, 4029 (1997)

    Article  MathSciNet  Google Scholar 

  25. Ilyashenko, Y.: Thick attractors of step skew products. Regul. Chaotic Dyn. 15(2–3), 328–334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ilyashenko, Y.: Thick attractors of boundary preserving diffeomorphisms. Indag. Math. 22(3–4), 257–314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ilyashenko, Y., Kleptsyn, V., Saltykov, P.: Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins. J. Fixed Point Theory Appl. 3(2), 449–463 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jachymski, J.R.: An fixed point criterion for continuous self mappings on a complete metric space. Aequ. Math. 48, 163–170 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kakutani, S.: Random ergodic theorems and Markoff processes with a stable distribution. In: Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability (1950), pp. 247–261. University of California Press, Berkeley (1951)

  30. Kan, I.: Open sets of diffeomorphisms having two attractors, each with everywhere dense basin. Bull. Am. Math. Soc. 31, 68–74 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kleptsyn, V., Nalskii, M.B.: Contraction of orbits in random dynamical systems on the circle. Funct. Anal. Appl. 38(4), 267–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kleptsyn, V., Volk, D.: Physical measures for random walks on interval. Mosc. Math. J. 14(2), 339–365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Krengel, U.: Ergodic Theorems. de Gruyter Studies in Mathematics, vol. 6. Walter de Gruyter, Berlin (1985)

    Book  Google Scholar 

  34. Kudryashov, Y.G.: Bony attractors. Funkts. Anal. Prilozhen. 44(3), 73–76 (2010). (English transl. Functional. Anal. Appl. 44(3), 219–222 (2010))

    Article  MathSciNet  MATH  Google Scholar 

  35. Kudryashov, Y.G.: Des orbites p\(\acute{e}\)riodiques et des attracteurs des syst\(\acute{e}\)mes dynamiques. Ph.D. thesis. \(\acute{E}\)cole Normale Sup\(\acute{e}\)rieure de Lyon, Lyons (2010)

  36. Mane, R.: Ergodic Theory and Differentiable Dynamics. Volume 8 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1987)

    Google Scholar 

  37. Nobili, F.: Minimality of one invariant foliation for partially hyperbolic attractors. Nonlinearity 28, 1897–1918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nobili, F.: Partially hyperbolic sets with a dynamically minimal invariant lamination. arxiv.org/pdf/1703.07413 (2017)

  39. Okunev, A.V., Shilin, I.S.: On the attractors of step skew products over the Bernoulli shift. arXiv:1703.01763v1 (2017)

  40. Palis, J.: A global view of dynamics and a conjecture on the denseness of finitude of attractors. Asterisque 261(xiiixiv), 335–347 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Palis, J.: A global perspective for non-conservative dynamics. Ann. Inst. H. Poincare Anal. Non Lineaire 22(4), 485–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pecora, L.M., Carroll, T.L.: Discontinuous and nondifferentiable functions and dimension increase induced by filtering chaotic data. Chaos 6, 432–439 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rams, M.: Absolute continuity of the SBR measure for non-linear fat baker maps. Nonlinearity 16(5), 1649–1655 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stark, J.: Invariant graphs for forced systems. Phys. D 109, 163–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stark, J.: Regularity of invariant graphs for forced systems. Ergod. Theory Dyn. Syst. 9, 155–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stark, J., Davies, M.E.: Recursive filters driven by chaotic signals. In: IEE Colloquium on Exploiting Chaos in Signal Processing. IEE Digest, vol. 143, pp. 1–516 (1994)

  47. Tsujii, M.: Fat solenoidal attractors. Nonlinearity 14(5), 1011–1027 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tsujii, M.: Physical measures for partially hyperbolic surface endomorphisms. Acta Math. 194, 37–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Viana, M., Yang, J.: Physical measures and absolute continuity for one-dimensional center direction. Ann. de Inst. Henri Poincare (C) Non Linear Anal. 30(5), 845–877 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Viana, M., Yang, J.: Measure-theoretical properties of center foliations. arXiv:1603.03609 (2016)

  51. Volk, D.: Persistent massive attractors of smooth maps. Ergod. Theory Dyn. Syst. 34(2), 693–704 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Williams, R.F.: Expanding attractors. Inst. Ht. Etudes Sci. Publ. Math. 43, 169–203 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewer whose remarks improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Ghane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaj, M., Ghane, F.H. Non Hyperbolic Solenoidal Thick Bony Attractors. Qual. Theory Dyn. Syst. 18, 35–55 (2019). https://doi.org/10.1007/s12346-018-0274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-018-0274-3

Keywords

Mathematics Subject Classification

Navigation