Skip to main content
Log in

Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we establish the complete global stability of a metapopulation model based on Lyapunov direct method, and the Poincare–Bendixson theorem in combination with the Bendixson–Dulac criterion. Besides, we construct nonstandard finite difference (NSFD) schemes preserving essential properties of the metapopulation model such as positivity, boundedness and monotone convergence of the solutions, equilibria and their stability. The numerical simulations confirm the validity of the obtained theoretical results and the advantages of NSFD schemes over standard finite difference schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen, L.J.S.: An Introduction to Mathematical Biology. Prentice Hall, New Jersey (2007)

    Google Scholar 

  2. Amarasekare, P., Possingham, H.: Patch dynamics and metapopulation theory: the case of successional species. J. Theor. Biol. 209, 333–344 (2001)

    Article  Google Scholar 

  3. Dang, Q.A., Hoang, M.T.: Dynamically consistent discrete metapopulation model. J. Differ. Equ. Appl. 22, 1325–1349 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dang, Q.A., Tuan, H.M.: Lyapunov direct method for investigating stability of nonstandard finite difference schemes for metapopulation models. J. Differ. Equ. Appl. 24, 15–47 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems. Appl. Math. Lett. 18, 769–774 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dimitrov, D.T., Kojouharov, H.V.: Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems. Int. J. Numer. Anal. Model. 4, 280–290 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Dimitrov, D.T., Kojouharov, H.V.: Nonstandard finite-difference methods for predator-prey models with general functional response. Math. Comput. Simul. 78, 1–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Georgescu, P., Zhang, H.: Lyapunov functionals for two-species mutualisms. Appl. Math. Comput. 226, 754–764 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Iggidr, A., Bensoubaya, M.: New results on the stability of discrete-time systems and applications to control problems. J. Math. Anal. Appl. 219, 392–414 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  11. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator–prey models. Appl. Math. Lett. 14, 697–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl. Math. Lett. 15, 955–960 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66, 879–883 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Korobeinikov, A.: Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages. Bull. Math. Biol. 1, 75–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69, 1871–1886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korobeinikov, A.: Stability of ecosystem: global properties of a general predator-prey model. Math. Med. Biol. 26, 309–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. La Salle, J., Lefschetz, S.: Stability by Liapunov’s Direct Method. Academic Press, New York (1961)

    MATH  Google Scholar 

  18. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)

    Book  MATH  Google Scholar 

  19. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer, New York (2015)

    Book  MATH  Google Scholar 

  20. Mickens, R.E.: Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  21. Mickens, R.E.: Nonstandard finite difference schemes for differential equations. J. Differ. Equ. Appl. 9, 823–847 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Thieme, H.R.: Convergence results and a Poincar Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vargas De Leon, C.: On the global stability of SIS, SIR and SIRS epidemic models with standard incidence. Chaos Solitons Fractals 44, 1106–1110 (2011)

    Article  MATH  Google Scholar 

  24. Vargas De Leon, C.: Lyapunov functions for two-species cooperative systems. Appl. Math. Comput. 219, 2493–2497 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Yang, W., Li, X.: Global asymptotical stability of a \(n+1\) dimensional Leslie-Gower predator-prey model. Appl. Math. Comput. 235, 377–382 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant number 102.01-2017.306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manh Tuan Hoang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Q.A., Hoang, M.T. Complete Global Stability of a Metapopulation Model and Its Dynamically Consistent Discrete Models. Qual. Theory Dyn. Syst. 18, 461–475 (2019). https://doi.org/10.1007/s12346-018-0295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-018-0295-y

Keywords

Mathematics Subject Classification

Navigation