Skip to main content
Log in

Analysis of Degenerate Fold–Hopf Bifurcation in a Three-Dimensional Differential System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this work we study degenerate fold–Hopf bifurcation of codimension three in a differential system of the form

$$\begin{aligned} {\dot{x}}=-x-y-z,\ {\dot{y}}=x+ay+bxy,\ {\dot{z}}=bx-cz. \end{aligned}$$

We prove that the classical theory of the fold–Hopf bifurcation cannot be applied for studying the system’s behavior. However, using tools from averaging theory we prove the existence of periodic orbits generated by this bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giné, J., Grau, M., Llibre, J.: Limit cycles bifurcating from planar polynomial quasi-homogeneous centers. J. Differ. Equ. 259, 7135–7160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258, 4007–4032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth. Bull. Sci. math. 139, 229–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candido, M.R., Llibre, J.: New results on averaging theory and applications. Z. Angew. Math. Phys. 67, 106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Francoise, J.-P.: Poincaré–Andronov–Hopf bifurcation and the local Hilbert’s 16th problem. Qual. Theory Dyn. Syst. 11(1), 61–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  7. Tigan, G.: Degenerate with respect to parameters fold–Hopf bifurcations. Discrete Contin Dyn Syst Ser A 37(4), 2115–2140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cid-Montiel, L., Llibre, J., Stoica, C.: Zero–Hopf bifurcation in a hyperchaotic Lorenz system. Nonlinear Dyn. 75(3), 561–566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buzzi, C., Llibre, J., Medrado, J.: Hopf and zero–Hopf bifurcations in the Hindmarsh–Rose system. Nonlinear Dyn. 83(3), 1549–1556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Llibre, J., Zhang, X.: On the Hopf-zero bifurcation of the Michelson system. Nonlinear Anal. Real World Appl. 12(3), 1650–1653 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Efstathiou, K., Liu, X., Broer, H.W.: The boundary-Hopf–fold bifurcation in Filippov systems. SIAM J. Appl. Dyn. Syst. 14, 914–941 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. 57A(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  13. Han, M., Romanovski, V.G., Zhang, X.: Equivalence of the Melnikov function method and the averaging method. Qual. Theory Dyn. Syst. 15(2), 471–479 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buica, A.: On the Equivalence of the Melnikov Functions Method and the Averaging Method, Qualitative Theory of Dynamical Systems. doi:10.1007/s12346-016-0216-x (to appear)

  15. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, Universitext. Springer, New York (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gheorghe Tigan.

Appendix

Appendix

In this section we recall the main results concerning non-degenerate fold–Hopf bifurcations needed to deal with degenerate cases. For more details we refer the reader at [6].

Consider a system in the form

$$\begin{aligned} {\dot{x}}=f(x,\alpha ), \end{aligned}$$
(31)

\(x\in {\mathbb {R}}^{3},\alpha \in {\mathbb {R}}^{2},\) f smooth, which has an equilibrium \(x=0\) with the eigenvalues \(\lambda _{1}=\nu (\alpha ),\) \( \lambda =\mu (\alpha )+i\omega (\alpha )\) and \({\bar{\lambda }}\) for \(||\alpha ||=\sqrt{\alpha _{1}^{2}+\alpha _{2}^{2}}\) small enough, such that \(\nu (0)=\mu (0)=0\) and \(\omega (0)=\omega _{0}>0,\) i.e. for \(\alpha =0\) the equilibrium \(x=0\) has a zero and two purely complex eigenvalues. The reader will notice that we write \(x=0\) and \(\alpha =0\) for \(x=\left( 0,0,0\right) \) and \(\alpha =\left( 0,0\right) .\)

Expanding \(f(x,\alpha )\) with respect to x at \(x=0,\) the system (31) reads

$$\begin{aligned} {\dot{x}}=a(\alpha )+J(\alpha )x+F(x,\alpha ), \end{aligned}$$
(32)

where \(a(0)=0\) and \(F(x,\alpha )=O(||x||^{2}).\) The system can be further put in the form

$$\begin{aligned} \begin{array}{ccc} {\dot{u}} &{} = &{} \Gamma \left( \alpha \right) +\nu \left( \alpha \right) u+g(u,z,{\bar{z}},\alpha ), \\ {\dot{z}} &{} = &{} \Omega \left( \alpha \right) +\lambda \left( \alpha \right) z+h(u,z,{\bar{z}},\alpha ), \end{array} \end{aligned}$$
(33)

where \(u=\left\langle p_{0}(\alpha ),x\right\rangle ,z=\left\langle p_{1}(\alpha ),x\right\rangle \) and \(p_{0}(\alpha )\in {\mathbb {R}}^{3},p_{1}(\alpha )\in {\mathbb {C}}^{3}\) are two adjoint eigenvectors given by

$$\begin{aligned} J^{T}(\alpha )p_{0}(\alpha )=\nu \left( \alpha \right) p_{0}(\alpha )\ \ \text {and}\ \ J^{T}(\alpha )p_{1}(\alpha )={\bar{\lambda }}(\alpha )p_{1}(\alpha ) \end{aligned}$$
(34)

such that

$$\begin{aligned} \left\langle p_{0}(\alpha ),q_{0}(\alpha )\right\rangle =\left\langle p_{1}(\alpha ),q_{1}(\alpha )\right\rangle =1\ \ \text {and}\ \ \left\langle p_{1}(\alpha ),q_{0}(\alpha )\right\rangle =\left\langle p_{0}(\alpha ),q_{1}(\alpha )\right\rangle =0, \end{aligned}$$
(35)

for all \(||\alpha ||\) small enough. As usual, for any two vectors we have \( \left\langle u,v\right\rangle =\overline{u}_{1}v_{1}+\overline{u}_{2}v_{2}+ \overline{u}_{3}v_{3}.\)

The vectors \(q_{0}(\alpha )\) and \(q_{1}(\alpha )\) are two eigenvectors corresponding to the eigenvalues \(\nu \left( \alpha \right) \) and \(\lambda =\mu (\alpha )+i\omega (\alpha ),\) i.e. \(J(\alpha )q_{0}(\alpha )=\nu \left( \alpha \right) q_{0}(\alpha )\) and \(J(\alpha )q_{1}(\alpha )=\lambda (\alpha )q_{1}(\alpha ).\) We can write

$$\begin{aligned} x=uq_{0}(\alpha )+zq_{1}(\alpha )+{\bar{z}}\bar{q}_{1}(\alpha ). \end{aligned}$$
(36)

Here

$$\begin{aligned} \Gamma \left( \alpha \right) =\left\langle p_{0}(\alpha ),a\left( \alpha \right) \right\rangle ,\Omega \left( \alpha \right) =\left\langle p_{1}(\alpha ),a\left( \alpha \right) \right\rangle \end{aligned}$$
(37)

are smooth functions of \(\alpha \) with \(\Gamma \left( 0\right) =\Omega \left( 0\right) =0\) and

$$\begin{aligned} \begin{array}{ccc} g(u,z,{\bar{z}},\alpha ) &{} = &{} \left\langle p_{0}(\alpha ),F(uq_{0}(\alpha )+zq_{1}(\alpha )+{\bar{z}}\bar{q}_{1}(\alpha ),\alpha )\right\rangle , \\ h(u,z,{\bar{z}},\alpha ) &{} = &{} \left\langle p_{1}(\alpha ),F(uq_{0}(\alpha )+zq_{1}(\alpha )+{\bar{z}}\bar{q}_{1}(\alpha ),\alpha )\right\rangle , \end{array} \end{aligned}$$
(38)

are smooth functions of their variables whose Taylor expansions in \(u,z,\bar{ z}\) start with quadratic terms:

$$\begin{aligned} \begin{array}{ccc} g(u,z,{\bar{z}},\alpha ) &{} = &{} \sum _{j+k+l\ge 2}\frac{1}{j!k!l!} g_{jkl}(\alpha )u^{j}z^{k}{\bar{z}}^{l}, \\ h(u,z,{\bar{z}},\alpha ) &{} = &{} \sum _{j+k+l\ge 2}\frac{1}{j!k!l!} h_{jkl}(\alpha )u^{j}z^{k}{\bar{z}}^{l}. \end{array} \end{aligned}$$
(39)

Using the changes

$$\begin{aligned} \begin{array}{lll} v &{} = &{} u+\delta _{0}+\delta _{1}u+\delta _{2}z+\delta _{3}{\bar{z}}+\frac{1}{2 }V_{020}z^{2}+\frac{1}{2}V_{002}{\bar{z}}^{2}+V_{110}uz+V_{101}u{\bar{z}}, \\ w &{} = &{} z+\Delta _{0}+\Delta _{1}u\!+\!\Delta _{2}z\!+\!\Delta _{3}{\bar{z}}\!+\!\frac{1}{2 }W_{200}u^{2}\!+\!\frac{1}{2}W_{020}z^{2}+\frac{1}{2}W_{002}{\bar{z}}^{2}+W_{101}u {\bar{z}}\!+\!W_{011}z{\bar{z}}, \end{array}\nonumber \\ \end{aligned}$$
(40)

where \(\delta _{i}\left( \alpha \right) ,\Delta _{i}\left( \alpha \right) \) are smooth functions, \(\delta _{i}\left( 0\right) =\Delta _{i}\left( 0\right) =0,i=0,1,2,3,\) the system (33) can be further brought to Poincaré normal form. More exactly we have the following Theorem [6].

Theorem 4.1

If (G.1) \(g_{200}\left( 0\right) \ne 0,\) then there exists a locally defined smooth, invertible variable transformation of the form (40), smoothly depending on the parameters, that for \(||\alpha ||\) small enough brings the system (33) in the form

$$\begin{aligned} \begin{array}{lll} \dot{v} &{} = &{} \gamma (\alpha )+\frac{1}{2}G_{200}(\alpha )v^{2}+G_{011}(\alpha )|w|^{2}+\frac{1}{6}G_{300}(\alpha )v^{3}+G_{111}(\alpha )v|w|^{2}\\ &{}&{}+\,O\left( ||(v,w,\bar{w})||^{4}\right) , \\ \dot{w} &{} = &{} R\left( \alpha \right) w+H_{110}(\alpha )vw+\frac{1}{2} H_{210}(\alpha )v^{2}w+\frac{1}{2}H_{021}(\alpha )w|w|^{2}\\ &{}&{}+\,O\left( ||(v,w, \bar{w})||^{4}\right) , \end{array} \end{aligned}$$
(41)

where \(v\in {\mathbb {R}} ,w\in {\mathbb {C}} \) and \(\gamma \left( \alpha \right) ,G_{jkl}\left( \alpha \right) \) are real-valued smooth functions while \(R(\alpha ),H_{jkl}\left( \alpha \right) \) are complex-valued smooth functions such that \(\gamma (0)=0,R(0)=i\omega _{0}.\) Their expressions at \(\alpha =0\) are given below.

If in addition (G.2) \(G_{011}\left( 0\right) \ne 0,\) the Poincaré form (41) can be further reduced to (44) by means of time reparametrization

$$\begin{aligned} dt=\left( 1+e_{1}\left( \alpha \right) v+e_{2}\left( \alpha \right) |w|^{2}\right) d\tau \end{aligned}$$
(42)

and transformations

$$\begin{aligned} u=v+e_{4}\left( \alpha \right) v+\frac{1}{2}e_{3}\left( \alpha \right) v^{2} \text { and }z=w+K\left( \alpha \right) vw, \end{aligned}$$
(43)

where \(e_{i}\in {\mathbb {R}} ,K\in {\mathbb {C}} \) are smooth functions and \(e_{4}\left( 0\right) =0.\) More exactly, the system (41) is locally smoothly orbitally equivalent near the origin to the system

$$\begin{aligned} \begin{array}{ccc} {\dot{u}} &{} = &{} \delta (\alpha )+B(\alpha )u^{2}+C(\alpha )|z|^{2}+O(||u,z, {\bar{z}}||^{4}), \\ {\dot{z}} &{} = &{} \Sigma (\alpha )z+D(\alpha )uz+E(\alpha )u^{2}z+O(||u,z,{\bar{z}} ||^{4}), \end{array} \end{aligned}$$
(44)

where \(u\in {\mathbb {R}} ,z\in {\mathbb {C}} \) and \(\delta (\alpha ),B\left( \alpha \right) ,C(\alpha ),E(\alpha )\) are real-valued smooth functions while \(\Sigma (\alpha ),D(\alpha )\) are complex-valued smooth functions (given below for \(\alpha =0\)) such that \( \delta (0)=0,\Sigma (0)=i\omega _{0}.\)

Finally, if (G.3) \(E\left( 0\right) \ne 0\) is satisfied, using the linear scaling \(u=\frac{B\left( \alpha \right) }{E\left( \alpha \right) }\xi ,z= \frac{B^{3}\left( \alpha \right) }{C\left( \alpha \right) E^{2}\left( \alpha \right) }\zeta \) and the time-reparametrization, \(t=\frac{E\left( \alpha \right) }{B^{2}\left( \alpha \right) }\tau ,\) the system (44) leads to normal form:

$$\begin{aligned} \begin{array}{lll} {\dot{\xi }} &{} = &{} \beta _{1}(\alpha )+\xi ^{2}+s|\zeta |^{2}+O(||\left( \xi ,\zeta ,\bar{\zeta }\right) ||^{4}), \\ {\dot{\zeta }} &{} = &{} (\beta _{2}(\alpha )+i\omega _{1}(\alpha ))\zeta +(\theta (\alpha )+i\omega _{2}(\alpha ))\xi \zeta +\xi ^{2}\zeta +O(||\left( \xi ,\zeta ,{\bar{\zeta }}\right) ||^{4}), \end{array} \end{aligned}$$
(45)

where \(s=sign\left[ B(0)C(0)\right] =\pm 1\) and

$$\begin{aligned} \beta _{1}(\alpha )= & {} \frac{E^{2}(\alpha )}{B^{3}(\alpha )}\delta (\alpha ), \ \ \beta _{2}(\alpha )=\frac{E(\alpha )}{B^{2}(\alpha )}{Re}(\Sigma (\alpha )), \nonumber \\ \theta (\alpha )+i\omega _{2}(\alpha )= & {} \frac{D(\alpha )}{B(\alpha )}, \ \ \ \omega _{1}(\alpha )=\frac{E(\alpha )}{B^{2}(\alpha )}{Im} (\Sigma (\alpha )), \end{aligned}$$
(46)

with \(||\left( \xi ,\zeta ,\bar{\zeta }\right) ||^{4}=\left( \xi ^{2}+|\zeta |^{2}\right) ^{2}.\)

This form (45), for (G.4) \(\theta _{0}=\theta \left( 0\right) \ne 0\) and (G.5) the map \(\alpha \longmapsto \beta \left( \alpha \right) \) is regular at \(\alpha =0,\) leads to the truncated normal form

$$\begin{aligned} {\dot{\xi }}= & {} \beta _{1}+\xi ^{2}+sr^{2}, \nonumber \\ \dot{r}= & {} r\left( \beta _{2}+\theta \left( \alpha \right) \xi +\xi ^{2}\right) , \nonumber \\ {\dot{\varphi }}= & {} \omega _{1}+\omega _{2}\xi . \end{aligned}$$
(47)

\(\square \)

The coefficients needed above in Theorem 4.1 are:

$$\begin{aligned} G_{200}(0)= & {} g_{200},G_{011}(0)=g_{011},H_{110}(0)=h_{110}, \nonumber \\ G_{300}(0)= & {} g_{300}-\frac{6}{\omega _{0}}Im\left( g_{110}h_{200}\right) , \nonumber \\ G_{111}(0)= & {} g_{111}-\frac{1}{\omega _{0}}Im\left( 2g_{110}h_{011}+g_{020}h_{101}\right) ,\nonumber \\ H_{210}(0)= & {} h_{210}+\frac{i}{\omega _{0}}\left[ h_{200}\left( h_{020}-2g_{110}\right) -\left| h_{101}\right| ^{2}-h_{011}\bar{h} _{200}\right] , \nonumber \\ H_{021}(0)= & {} h_{021}+\frac{i}{\omega _{0}}\left( h_{011}h_{020}-\frac{1}{2} g_{020}h_{101}-2\left| h_{011}\right| ^{2}-\frac{1}{3}\left| h_{002}\right| ^{2}\right) ,\qquad \end{aligned}$$
(48)

respectively,

$$\begin{aligned} B(0)= & {} \frac{1}{2}G_{200}(0),C(0)=G_{011}(0), \nonumber \\ D(0)= & {} H_{110}(0)-i\omega _{0}\frac{G_{300}(0)}{3G_{200}(0)}, \nonumber \\ E(0)= & {} \frac{1}{2}Re\left( H_{210}(0)+H_{110}(0)\left( \frac{Re\left( H_{021}(0)\right) }{G_{011}(0)}-\frac{G_{300}(0)}{G_{200}(0)}+\frac{ G_{111}(0)}{G_{011}(0)}\right) \right. \nonumber \\&\left. -\frac{H_{021}(0)G_{200}(0)}{2G_{011}(0)} \right) . \end{aligned}$$
(49)

The needed coefficients for our system (2) are:

$$\begin{aligned} G_{200}&=-\frac{2\left( a-1\right) ^{2}}{a^{2}+a-1},G_{011}=-\frac{ 2a^{3}\left( 2a-1\right) \left( a-1\right) ^{2}}{a^{2}+a-1},\nonumber \\ G_{111}&=a^{2}\left( 2a-1\right) \left( a-1\right) ^{3}\frac{ 2a^{3}+5a-1}{\left( a+a^{2}-1\right) ^{2}}, \nonumber \\ G_{300}&=6\left( a^{2}+1\right) \frac{\left( a-1\right) ^{3}}{\left( a^{2}+a-1\right) ^{2}},H_{110}=\frac{ \left( a-1\right) \left( a+i\omega _{0}-1\right) }{2\left( 2a-1\right) \left( a^{2}+a-1\right) }\left( a^{3}+i\omega _{0}a^{2}+2a-1\right) ,\nonumber \\ H_{210}&=\frac{1}{a\omega _{0}}\frac{\left( a-1\right) ^{3}}{\left( a^{2}+a-1\right) ^{2}}\left( -a\omega _{0}\left( a+4a^{2}+2\right) +i\left( \frac{11}{4}a^{3}-2a^{2}-\frac{3}{2}a+4a^{4}-\frac{1}{4}\right) \right) , \nonumber \\ H_{021}&=-\frac{2a\left( a-1\right) ^{3}\left( 2a-1\right) }{\omega _{0}\left( a^{2}+a-1\right) ^{2}}\left( \frac{1}{4}a\omega _{0}\left( 3a+2a^{2}+4a^{3}-1\right) \right. \nonumber \\&\quad \left. +\,i\left( \frac{2}{3}a+\frac{1}{6}a^{2}+\frac{1}{4} a^{3}-\frac{3}{2}a^{4}-a^{5}-\frac{1}{4}\right) \right) , \end{aligned}$$
(50)

respectively,

$$\begin{aligned}&B(0)=-\frac{\left( a-1\right) ^{2}}{\left( a^{2}+a-1\right) },\ \ C(0)=- \frac{2a^{3}\left( 2a-1\right) \left( a-1\right) ^{2}}{a^{2}+a-1}, \nonumber \\&D\left( 0\right) =\frac{1}{2}\frac{a-1}{a^{2}+a-1}\left( a^{3}+3i\omega _{0}a^{2}+3i\omega _{0}-1\right) ,\nonumber \\&E\left( 0\right) =\frac{\left( a-1\right) ^{3}}{16a\left( a+a^{2}-1\right) }\left( 12a^{3}+2a^{2}+5a+1\right) . \end{aligned}$$
(51)

We have also \(\left| h_{101}\right| ^{2}=-\frac{1}{4} \left( a\!-\!1\right) ^{3}\frac{2a+3a^{3}\!-\!1}{a\left( a+a^{2}\!-\!1\right) ^{2}},\) \( \left| h_{011}\right| ^{2}\!=\!-a^{5}\left( 2a-1\right) \frac{\left( a-1\right) ^{3}}{\left( a+a^{2}-1\right) ^{2}}\) and \(\left| h_{002}\right| ^{2}=-a^{2}\left( a-1\right) ^{3}\frac{\left( 2a-1\right) ^{2}}{\left( a+a^{2}-1\right) ^{2}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigan, G. Analysis of Degenerate Fold–Hopf Bifurcation in a Three-Dimensional Differential System. Qual. Theory Dyn. Syst. 17, 387–402 (2018). https://doi.org/10.1007/s12346-017-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0241-4

Keywords

Navigation