Skip to main content
Log in

An SEIR Epidemic Model with Relapse and General Nonlinear Incidence Rate with Application to Media Impact

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The aim of this paper is to extend the incidence rate of an SEIR epidemic model with relapse and varying total population size to a general nonlinear form, which does not only include a wide range of monotonic and concave incidence rates but also takes on some neither monotonic nor concave cases, which may be used to reflect media education or psychological effect. By application of the novel geometric approach based on the third additive compound matrix, we focus on establishing the global stability of the SEIR model. Our analytical results reveal that the model proposed can retain its threshold dynamics that the basic reproduction number completely determines the global stability of equilibria. Our conclusions are applied to two special incidence functions reflecting media impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adnani, J., Hattaf, K., Yousfi, N.: Stability analysis of a stochastic SIR epidemic model with specific nonlinear incidence rate. Int. J. Stoch. Anal. 2013, Article ID 431257 (2013). doi:10.1155/2013/431257

  2. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford Univ Press, Oxford (1991)

    Google Scholar 

  3. Anderson, R.M., May, R.M.: Population Biological of Infectious Disease. Springer, Heidelberg (1982)

    Book  Google Scholar 

  4. Benedetti, J., Corey, L., Ashley, R.: Recurrence rates in genital herpes after symptomatic first-episode infection. Ann. Int. Med. 121(11), 847–854 (1994)

    Article  Google Scholar 

  5. Capasso, V., Serio, G.: A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42(1), 43–61 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, Y., Wang, J., Yang, X.: On the global stability of a generalized cholera epidemiological model. J. Biol. Dyn. 6(2), 1088–1104 (2012)

    Article  Google Scholar 

  7. Cui, J., Sun, Y., Zhu, H.: The impact of media on the control of infectious diseases. J. Dyn. Differ. Equ. 20(1), 31–53 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, G., Takeuchi, Y., Ma, W., Wei, D.: Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate. Bull. Math. Biol. 72, 1192–1207 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaddar, A.: On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate. Electron. J. Differ. Equ. 2009(133), 1–7 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R Soc. Lond. Ser. A Math. Phys. Eng. Sci. 115(722), 700–721 (1927)

    Article  MATH  Google Scholar 

  12. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-II. The problem of endemicity. Bull. Math. Biol. 53(1), 57–87 (1991)

    MATH  Google Scholar 

  13. Kim, A.Y., Schulze zur Wiesch, J., Kuntzen, T., et al.: Impaired hepatitis C virus-specific T cell responses and recurrent hepatitis C virus in HIV coinfection. PLoS Med. 3(12), e492 (2006)

    Article  Google Scholar 

  14. Kimberlin, D.W., Rouse, D.J.: Genital herpes. N. Engl. J. Med. 350, 1970–1977 (2004)

    Article  Google Scholar 

  15. Korobeinikov, A.: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Bull. Math. Biol. 68(3), 615–626 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence. Bull. Math. Biol. 69(6), 1871–1886 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korobeinikov, A., Maini, P.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22(2), 113–128 (2005)

    Article  MATH  Google Scholar 

  18. La Salle, J.P.: The stability of dynamical systems. In: Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA (1976)

  19. Lahrouz, A., Omari, L., Kiouach, D., Belmaâtic, A.: Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination. Appl. Math. Comput. 218(11), 6519–6525 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Lambert, M.L., Hasker, E., Van Deun, A., Roberfroid, D., Boelaert, M., Van der, S.P.: Recurrence in tuberculosis: relapse or reinfection? Lancet Infect. Dis. 3(5), 282–287 (2003)

    Article  Google Scholar 

  21. Li, B., Yuan, S., Zhang, W.G.: Analysis on an epidemic model with a ratio-dependent nonlinear incidence rate. Int. J. Biomath. 4(02), 227–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, M.Y., Muldowney, J.S.: Dynamics of differential equations on invariant manifolds. J. Differ. Equ. 168(2), 295–320 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, M.Y., Muldowney, J.S.: Global stability for the SEIR model in epidemiology. Math. Biosci. 125(2), 155–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, L., Wang, J., Liu, X.: Global stability of an SEIR epidemic model with age-dependent latency and relapse. Nonlinear Anal. Real World Appl. 24(1), 18–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, S., Pang, L., Ruan, S., Zhang, X.: Global dynamics of avian influenza epidemic models with psychological effect. Comput. Math. Methods Med. 2015, Article ID 913726 (2015). doi:10.1155/2015/913726

  26. Liu, W., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25(4), 359–380 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, W., Levin, S., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23(2), 187–204 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, X., Yang, L.: Stability analysis of an SEIQV epidemic model with saturated incidence rate. Nonlinear Anal. Real World Appl. 13(6), 2671–2679 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Cui, J.: The impact of media coverage on the dynamics of infectious disease. Int. J. Biomath. 1(01), 65–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marzano, A., Gaia, S., Ghisetti, V., et al.: Viral load at the time of liver transplantation and risk of hepatitis B virus recurrence. Liver Transplant. 11(4), 402–409 (2005)

    Article  Google Scholar 

  31. McCluskey, C.C.: Global stability for an SIR epidemic model with delay and nonlinear incidence. Nonlinear Anal. Real World Appl. 11(4), 3106–3109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nyabadza, F., Mukandavire, Z., Hove-Musekwa, S.D.: Modelling the HIV/AIDS epidemic trends in South Africa: insights from a simple mathematical model. Nonlinear Anal. Real World Appl. 12(4), 2091–2104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pang, J., Cui, J., Zhou, X.: Dynamical behavior of a hepatitis B virus transmission model with vaccination. J. Theor. Biol. 265(4), 572–578 (2010)

    Article  MathSciNet  Google Scholar 

  34. Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188, 135–163 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, C., Lin, Y., Tang, S.: Global stability for an special SEIR epidemic model with nonlinear incidence rates. Chaos Solitons Fractals 33(1), 290–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tchuenche, J.M., Dube, N., Bhunu, C.P., Smith, R.J., Bauch, C.T.: The impact of media coverage on the transmission dynamics of human influenza. BMC Public Health 11(Suppl 1), S5 (2011). doi:10.1186/1471-2458-11-S1-S5

    Google Scholar 

  37. Teng, Z., Wang, L., Nie, L.: Global attractivity for a class of delayed discrete SIRS epidemic models with general nonlinear incidence. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3389

    MathSciNet  MATH  Google Scholar 

  38. Van den Driessche, P., Li, M.Y., Muldowney, J.S.: Global stability of SEIRS models in epidemiology. Can. Appl. Math. Q. 7(1), 409–425 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Van den Driessche, P., Zou, X.: Modeling relapse in infectious diseases. Math. Biosci. 207(1), 89–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Van den Driessche, P., Wang, L., Zou, X.: Modeling diseases with latency and relapse. Math. Biosci. Eng. 4(2), 205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, L., Li, Y., Pang, L.: Dynamics analysis of an epidemiological model with media impact and two delays. Math. Probl. Eng. 2016, Art. ID 1598932 (2016)

  43. Wang, L., Liu, Z., Zhang, X.: Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination. Nonlinear Anal. Real World Appl. 32, 136–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, L., Liu, Z., Zhang, X.: Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence. Appl. Math. Comput. 284, 47–65 (2016)

    MathSciNet  Google Scholar 

  45. Wang, X., Liu, S.: An epidemic model with different distributed latencies and nonlinear incidence rate. Appl. Math. Comput. 241(1), 259–266 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Wei, C., Chen, L.: A delayed epidemic model with pulse vaccination. Discrete Dyn. Nat. Soc. 2008, Article ID 746951 (2008). doi:10.1155/2008/746951

  47. Wolkowicz, G.S.K., Lu, Z.: Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates. SIAM J. Appl. Math. 52(1), 222–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu, R.: Global dynamics of an SEIRI epidemiological model with time delay. Appl. Math. Comput. 232(1), 436–444 (2014)

    MathSciNet  Google Scholar 

  50. Yuan, S., Li, B.: Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate. Discret. Dyn. Nat. Soc. 2009, Article ID 609306 (2009). doi:10.1155/2009/609306

  51. Zhou, Y., Cui, J.: Global stability of the viral dynamics with Crowley–Martin functional response. Bull. Korean Math. Soc. 48(1), 555–574 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, Y., Xiao, D., Li, Y.: Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action. Chaos Solitons Fractals 32(5), 1903–1915 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the anonymous reviewers for their constructive comments and valuable suggestions which help us to greatly improve the presentation of this paper. The work is supported by National Natural Science Foundation of China (Nos.11371161 and 11261017). The work is also sponsored by Youth Talents Project of Science and Technology Research Plan of Hubei Provincial Education Department, and Doctoral Scientific Research Starting Found of Hubei University for Nationalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwen Wang.

Appendix: The Third Additive Compound Matrix

Appendix: The Third Additive Compound Matrix

The novel geometric approach based on the third additive compound matrix, in what follows, is briefly presented. Li et al. [22, 38] originally developed the theory, and Cheng et al. [6] applied it to study a generalized cholera epidemiological model. Let us consider the following dynamical system

$$\begin{aligned} \begin{array}{lll} \displaystyle \frac{d\mathrm {X}(t)}{dt}=\mathrm {F}(\mathrm {X}), \end{array} \end{aligned}$$
(6.1)

where \(\mathrm {F}\): \(\mathcal {D}\mapsto \mathbb {R}^n\) is a \(\mathbb {C}^1\) function and \(\mathcal {D}\subset \mathbb {R}^n\) is a simply connected open set. Here, \(\mathrm {X}(t,\ \mathrm {X}_0)\) denotes the solution of (6.1) with the initial condition \(\mathrm {X}(0)=\mathrm {X}_0\). Suppose that

\(\mathrm{{(A1)}}\) :

there exists a compact absorbing set \(\mathcal {K}\subset \mathcal {D}\);

\(\mathrm{{(A2)}}\) :

(6.1) has only one positive equilibrium \(\mathrm {X}_*\in \mathcal {D}\).

The third additive compound matrix \(\mathcal {A}^{[3]}\) for a \(4\times 4\) matrix \(\mathcal {A}= (a_{ij})\) is given by

$$\begin{aligned} \mathcal {A}^{[3]}=\left( \begin{array}{ccccc} a_{11}+a_{22}+a_{33}\ \ &{} a_{34}\ \ &{} -a_{24}\ \ &{} a_{14}\\ a_{43}\ \ &{} a_{11}+a_{22}+a_{44}\ \ &{} a_{23}\ \ &{} -a_{13}\\ -a_{42}\ \ &{} a_{32}\ \ &{} a_{11}+a_{33}+a_{44}\ \ &{} a_{12}\\ a_{41}\ \ &{} -a_{31}\ \ &{} a_{21}\ \ &{} a_{22}+a_{33}+a_{44} \end{array} \right) . \end{aligned}$$

For a solution \(\mathrm {X}(t,\ \mathrm {X}_0)\) of any initial value problem of (6.1), the linearized system is of the following form

$$\begin{aligned} \begin{array}{lll} \displaystyle \frac{d\mathrm {Y}(t)}{dt}=\mathrm {J}(\mathrm {X}(t,\ \mathrm {X}_0))\mathrm {Y}(t), \end{array} \end{aligned}$$
(6.2)

and the associated third compound system reads

$$\begin{aligned} \begin{array}{lll} \displaystyle \frac{d\mathrm {U}(t)}{dt}=\mathrm {J}^{[3]}(\mathrm {X}(t,\ \mathrm {X}_0))\mathrm {U}(t), \end{array} \end{aligned}$$
(6.3)

where \(\mathrm {J}^{[3]}\) stands for the third compound matrix of the Jacobian matrix \(\mathrm {J}\) for (6.1).

Lemma 6.1

[6] Let (A1) and (A2) be true and there exists a Lyapunov function \(V(\mathrm {X}, \mathrm {U})\), a function \(\psi (t)\), and positive constants \(h_1\), \(h_2\) and l such that

\(\mathrm{{(1)}}\) :

\(h_1\mid \mathrm {U}\mid \le V(\mathrm {X}, \mathrm {U})\le h_2\mid \mathrm {U}\mid \), \(h_1\le \psi (t)\le h_2\),

\(\mathrm{{(2)}}\) :

\(D_+V\le (\psi (t)-l)V\),

where the total derivative \(D_+V\) is taken along the direction of (6.3), then the interior equilibrium \(\mathrm {X}_*\) of system (6.1) is GAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, X. & Liu, Z. An SEIR Epidemic Model with Relapse and General Nonlinear Incidence Rate with Application to Media Impact. Qual. Theory Dyn. Syst. 17, 309–329 (2018). https://doi.org/10.1007/s12346-017-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0231-6

Keywords

Mathematics Subject Classfication

Navigation