Skip to main content
Log in

A Coordinate-Independent Version of Hoppensteadt’s Convergence Theorem

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The classical theorems about singular perturbation reduction (due to Tikhonov and Fenichel) are concerned with convergence on a compact time interval (in slow time) as a small parameter approaches zero. For unbounded time intervals Hoppensteadt gave a convergence theorem, but his criteria are generally not easy to apply to concrete given systems. We state and prove a convergence result for autonomous systems on unbounded time intervals which relies on criteria that are relatively easy to verify, in particular for the case of a one-dimensional slow manifold. As for applications, we discuss several reaction equations from biochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Ordinary Differential Equations. An Introduction to Nonlinear Analysis. Walter de Gruyter, Berlin (1990)

    Book  MATH  Google Scholar 

  2. Back, J., Shim, H.: Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: a nonlinear version of disturbance observer. Automatica 44, 2528–2537 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)

    Article  Google Scholar 

  4. Cavallo, A., Natale, C.: Output feedback control based on a high-order sliding manifold approach. IEEE Trans. Autom. Control 48, 469–472 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feinberg, M.: The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gantmacher, F.R.: Applications of the Theory of Matrices. Dover Publication, Mineola (2005)

    MATH  Google Scholar 

  8. Goeke, A., Schilli, C., Walcher, S., Zerz, E.: Computing quasi-steady state reductions. J. Math. Chem. 50, 1495–1513 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goeke, A., Walcher, S.: A constructive approach to quasi-steady state reductions. J. Math. Chem. 52, 2596–2626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goeke, A., Walcher, S., Zerz, E.: Determining “small parameters” for quasi-steady state. J. Differ. Equ. 259, 1149–1180 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirsch, M.W.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  12. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 8–116 (1972)

    Article  MathSciNet  Google Scholar 

  13. Hoppensteadt, F.C.: Singular Perturbations on the Infinite Interval. Trans. Am. Math. Soc. 123, 521–535 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  15. Lax, C.: Analyse und asymptotische Analyse von Kompartimentsystemen. Doctoral dissertation, RWTH Aachen (2016)

  16. Michaelis, L., Menten, M.L.: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  17. Milnor, J.W.: Topology from the Differentiable Viewpoint. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  18. Nestruev, J.: Smooth Manifolds and Observables. Springer, New York (2003)

    MATH  Google Scholar 

  19. Noethen, L., Walcher, S.: Tikhonov’s theorem and quasi-steady state. Discrete Contin. Dyn. Syst. Ser. B 16, 945–961 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Segel, L.A., Slemrod, M.: The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seliger, K.: Singuläre Störungen auf unbeschränkten Intervallen. Master’s thesis, RWTH Aachen (2015)

  22. Stiefenhofer, M.: Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol. 36, 593–609 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Teel, A.R., Moreau, L., Nesic, D.: A unified framework for input-to-state-stability in systems with two time scales. IEEE Trans. Autom. Control 48, 1526–1544 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tikhonov, A.N.: Systems of differential equations containing a small parameter multiplying the derivative. Math. Sb. 31, 575–586 (1952). (in Russian)

    Google Scholar 

  25. Walter, W.: Ordinary Differential Equations. Springer, New York (1998)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer for helpful detailed comments. The first author acknowledges support by the DFG Research Training Group “Experimental and constructive algebra”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Walcher.

Appendix: Hoppensteadt’s Conditions

Appendix: Hoppensteadt’s Conditions

For the reader’s convenience we recall here the conditions and the main result from Hoppensteadt’s original paper [13]. Recall the notation \(S_R\) from (2.3). Hoppensteadt considers a non-autonomous system that is given in Tikhonov standard form

$$\begin{aligned}&y_1'= f(\tau ,y_1,y_2,\varepsilon ) \end{aligned}$$
(5.1)
$$\begin{aligned}&y_2'=\varepsilon ^{-1}g(\tau ,y_1,y_2,\varepsilon ) \end{aligned}$$
(5.2)

with f and g defined on an open set

$$\begin{aligned}{}[0,\infty )\times D \times [0,\varepsilon _0)\subseteq [0,\infty )\times {\mathbb {R}}^s\times {\mathbb {R}}^r\times [0,\varepsilon _0)\rightarrow {\mathbb {R}}^r \end{aligned}$$

which satisfies \(S_R\subseteq D\) for some \(R>0\), and \(f,\,g\) having values in \({\mathbb {R}}^s\) and \({\mathbb {R}}^r\), respectively. Assume that the following conditions hold:

  1. (I)

    The system

    $$\begin{aligned} y_1'&=f(\tau ,y_1,y_2,0) \end{aligned}$$
    (5.3)
    $$\begin{aligned} 0&=g(\tau ,y_1,y_2,0) \end{aligned}$$
    (5.4)

    admits a solution \(Y:\,[0,\infty )\rightarrow {\mathbb {R}}^{s+r}\), \(\tau \mapsto Y(\tau )\). With a suitable transformation of (5.3)–(5.4) one may assume that \({\widetilde{Y}}\equiv 0\) is a solution of the transformed system. From here on, it will be assumed that (5.3)–(5.4) admits the solution \({\widetilde{Y}}\equiv 0\).

  2. (II)

    The functions f, g and their partial derivatives with respect to \(\tau \), \(y_1\), \(y_2\) respectively satisfy

    $$\begin{aligned} f,g,D_1f,D_2f,\partial _{\tau }g,D_1g,D_2g \in C([0,\infty )\times S_R\times [0,\varepsilon _0]). \end{aligned}$$
  3. (III)

    There exists an isolated and bounded \(C^2\)-solution \(Y_2=Y_2(\tau ,y_1)\) of the implicit equation

    $$\begin{aligned} g(\tau ,y_1,Y_2(\tau ,y_1),0)=0 \end{aligned}$$

    for all \(\tau \in [0,\infty )\) and \(y_1\in S_1\). By a transformation \({\widetilde{y}}_1=y_1\) and \({\widetilde{y}}_2+Y(\tau ,y_1)=y_2\), one may obtain that \(Y_2(\tau ,{\widetilde{y}}_1)=0\) for all \((\tau ,{\widetilde{y}}_1)\in [0,\infty )\times S_1\). This will be assumed for the original system (5.1)–(5.2) in the following.

  4. (IV)

    \(f(\cdot ,\cdot ,0,0)\) is uniformly continuous in \([0,\infty )\times S_{1,R}\), and moreover \(f(\cdot ,\cdot ,0,0)\) and \(D_1f(\cdot ,\cdot ,0,0)\) are bounded in \([0,\infty )\times S_{1,R}\).

  5. (V)

    \(g(\cdot ,\cdot ,\cdot ,0)\) is uniformly continuous in \([0,\infty )\times S_R\), and moreover \(g(\cdot ,\cdot ,\cdot ,0)\), \(\partial _{\tau }g(\cdot ,\cdot ,\cdot ,0)\), \(D_1g(\cdot ,\cdot ,\cdot ,0)\) \(D_2g(\cdot ,\cdot ,\cdot ,0)\) are bounded in \([0,\infty )\times S_R\).

  6. (VI)

    The solution \({\widetilde{Y}}\equiv 0\) of

    $$\begin{aligned} y'=f(\tau ,y,0,0) \end{aligned}$$
    (5.5)

    is uniformly asymptotically stable in the following sense: There exist a continuous, strictly increasing function

    $$\begin{aligned} d:[0,\infty )\rightarrow [0,\infty )\quad \text {with }d(0)=0 \end{aligned}$$

    and a continuous, strictly decreasing function \(\sigma :[0,\infty )\rightarrow [0,\infty )\) with \(\lim _{s\rightarrow \infty }\sigma (s)=0\), such that for every solution \(\Phi (\tau ,z)\) of (5.5) with initial value \(y_1(0)=z\in S_{1,R}\) and all \(\tau \ge 0\) one has

    $$\begin{aligned} \left| \Phi (\tau ,z)\right| _1\le d(\left| z\right| _1)\cdot \sigma (\tau ). \end{aligned}$$
  7. (VII)

    For all \((\alpha ,\beta )\in [0,\infty )\times S_{1,R}\) the solution \({\widetilde{Y}}\equiv 0\) of

    $$\begin{aligned} {\dot{x}}=g(\alpha ,\beta ,x,0) \end{aligned}$$

    is uniformly asymptotically stable in the following sense: There exist a continuous, strictly increasing function

    $$\begin{aligned} e:[0,\infty )\rightarrow [0,\infty )\quad \text {with }e(0)=0 \end{aligned}$$

    and a continuous, strictly decreasing function \(\rho :[0,\infty )\rightarrow [0,\infty )\) with \(\lim _{s\rightarrow \infty }\rho (s)=0\), such that for every solution \(\Psi (t,x_{0};\alpha ,\beta )\) of the equation with initial value \(x(0)=x_{0}\in S_{2,R}\) and parameters \((\alpha ,\beta )\in [0,\infty )\times S_{1,R}\) and all \(t\ge 0\) one has

    $$\begin{aligned} \left| \Psi (t,x_0;\alpha ,\beta )\right| _1\le e(\left| x_0\right| _1)\cdot \rho (t). \end{aligned}$$

Given these assumptions, Hoppensteadt’s main result [13] can be stated as follows:

Theorem 5.1

There exists a compact neighborhood \(K\subset S_R\) of 0 and \(\varepsilon _0^*\in (0,\varepsilon _0)\) such that the solution \(\Phi (t,y_0,\varepsilon )\) of (5.1)–(5.2) with initial value \(y(0)=y_0:=(y_{1,0},y_{2,0})\in K\) at \(\tau =0\) exists for all positive times provided that \(0<\varepsilon <\varepsilon _0^*\). Moreover \(\Phi (t,y_0,\varepsilon )\) converges uniformly on all closed subsets of \((0,\infty )\) towards the solution of (5.3)–(5.4) with initial value \(y_1(0)=y_{1,0}\), as \(\varepsilon \rightarrow 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lax, C., Seliger, K. & Walcher, S. A Coordinate-Independent Version of Hoppensteadt’s Convergence Theorem. Qual. Theory Dyn. Syst. 17, 7–28 (2018). https://doi.org/10.1007/s12346-017-0235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0235-2

Keywords

Mathematics Subject Classification

Navigation