Skip to main content
Log in

Special \(\alpha \)-Limit Points and \(\gamma \)-Limit Points of a Dendrite Map

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

An Erratum to this article was published on 24 July 2017

This article has been updated

Abstract

Let (Xd) be a compact metric space and f be a continuous map from X to X. Denote by R(f), \({ SA}(f)\) and \(\Gamma (f)\) the set of recurrent points, the set of special \(\alpha \)-limit points and the set of \(\gamma \)-limit points of f, respectively. It is well known that for an interval map f, the following three statements hold: (1) \(R(f)\subset { SA}(f)\cap \Gamma (f)\); (2) \({ SA}(f)= \Gamma (f)\); (3) \({ SA}(f)\cup \Gamma (f)\subset \overline{R(f)}\). The aim of this paper is to show that the above statement (1) holds for maps of dendrites with the number of endpoints being \(\aleph _{\mathbf{0}}\) (the cardinal number of the set of positive integers) and the above statements (2) and (3) do not hold for maps of dendrites with the number of endpoints being \(\aleph _{\mathbf{0}}\). Besides, we also study unilateral \(\gamma \)-limit points for maps of dendrites with the number of branch points being finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 24 July 2017

    An erratum to this article has been published.

References

  1. Acosta, G., Eslami, P.: On open maps between dendrites. Houst. J. Math. 33, 753–770 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Baldwin, S.: Continuous itinerary functions and dendrite maps. Topol. Appl. 154, 2889–2938 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balibrea, F., Hric, R., Snoha, L.: Minimal sets on graphs and dendrites. Int. J. Bifurc. Chaos 13, 1721–1725 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balibrea, F., Downarowicz, T., Hric, R., Snoha, L., Špitalský, V.: Almost totally disconnected minimal systems. Ergod. Theory Dyn. Syst. 29, 737–766 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beardon, A.F.: Iteration of Rational Functions. Springer, New York (1991)

    Book  MATH  Google Scholar 

  6. Chu, H., Xiong, J.: A counter example in dynamical systems of the interval. Proc. Am. Math. Soc. 97, 361–366 (1986)

    Article  MATH  Google Scholar 

  7. Efremova, L.S., Makhrova, E.N.: The dynamics of monotone maps of dendrites. Sb. Math. 192, 807–821 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Efremova, L.S., Makhrova, E.N.: On the center of continuous maps of dendrites. J. Differ. Equ. Appl. 9, 381–392 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hero, M.: Special \(\alpha \)-limit points for maps of the interval. Proc. Am. Math. Soc. 116, 1015–1022 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Kato, H.: A note on periodic points and recurrent points of maps of dendrites. Bull. Aust. Math. Soc. 51, 459–461 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mai, J., Shi, E.: \(\overline{R} =\overline{P}\) for maps of dendrites \(X\) with Card(End(\(X\))) \(< c\). Int. J. Bifurc. Chaos 19, 1391–1396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nadler Jr., S.B.: Continuum Theory: An Introduction. Marcel Dekker Inc., New York (1992)

    MATH  Google Scholar 

  13. Naghmouchi, I.: Dynamical properties of monotone dendrite maps. Topol. Appl. 159, 144–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Naghmouchi, I.: Pointwise-recurrent dendrite maps. Ergod. Theory Dyn. Syst. 33, 1115–1123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peitgen, H.O., Richter, P.H.: The Beauty of Fractals. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Sun, T.: The set of unilateral \(\gamma \)-limit points and the topological entropy of a tree map (Chinese). Adv. Math. 33, 57–66 (2004)

    MathSciNet  Google Scholar 

  17. Sun, T., Xi, H.: The centre and the depth of the centre for continuous maps on dendrites with finite branch points. Qual. Theory Dyn. Syst. (2016). doi:10.1007/s12346-016-0204-1

    Google Scholar 

  18. Sun, T., Xi, H., Chen, Z., Zhang, Y.: The attracting centre and the topological entropy of a graph map (Chinese). Adv. Math. 33, 540–546 (2004)

    MathSciNet  Google Scholar 

  19. Sun, T., Su, G., Liang, H., He, Q.: Topological entropy and special \(\alpha \)-limit points of graph maps. Discret. Dyn. Nat. Soc. 2011, 1–7 (2011)

    MathSciNet  Google Scholar 

  20. Sun, T., Xi, H., Liang, H.: Special \(\alpha \)-limit points and unilateral \(\gamma \)-limit points for graph maps. Sci. China Math. 54, 2013–2018 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, T., He, Q., Xi, H.: Intra-orbit separation of dense orbits of dendrite maps. Chaos Solitons Fractals 57, 89–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, T., Xi, H., He, Q.: Non-wandering sets of dendrite maps. Acta Math. Sin. Engl. Ser. (2016). doi:10.1007/s10114-016-5578-0

    MATH  Google Scholar 

  23. Xiong, J.: The attracting centre of a continuous self-map of the interval. Ergod. Theory Dyn. Syst. 8, 205–213 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taixiang Sun.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s12346-017-0252-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Tang, Y., Su, G. et al. Special \(\alpha \)-Limit Points and \(\gamma \)-Limit Points of a Dendrite Map. Qual. Theory Dyn. Syst. 17, 245–257 (2018). https://doi.org/10.1007/s12346-017-0225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0225-4

Keywords

Mathematics Subject Classification

Navigation