Skip to main content
Log in

Traveling Fronts of a Real Supercritical Ginzburg–Landau Equation Coupled by a Slow Diffusion

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Ginzburg–Landau equation plays a very important role in a wide range of physical contexts. Much attention had been given to explore the dynamics of the waves in Ginzburg–Landau equations as well as its various coupled reaction–diffusion systems. In this article, dynamical system techniques such as the methods of geometric singular perturbation theory and Melnikov function are combined to show the persistence (existence) and bifurcations of traveling fronts in a real supercritical Ginzburg–Landau equation coupled by a slow diffusion mode. It is shown that heteroclinic saddle-node bifurcation occurs under certain parametric values such that 1, 2 and even 3 heteroclinic solutions may exist. The critical manifolds of the parameters corresponding to the heteroclinic saddle-node bifurcations are explicitly determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Saarloos, W.: Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations. Phys. D 56, 303–367 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Stewartson, K., Stuart, J.T.: A nonlinear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529–545 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kuramoto, Y.: Chemical Oscillations, Wave and Turbulence. Springer, New York (1984)

    Book  MATH  Google Scholar 

  4. Doelman, Traveling: waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci. 3, 225–266 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doelman, A., Hek, G., Valkhoff, N.: Stabilization by slow diffusion in a real Ginzburg–Landau system. J. Nonlinear Sci. 14, 237–278 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Doelman, A., Hek, G., Valkhoff, N.: Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity 20, 357–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Riecke, H.: Self-trapping of traveling-wave pulses in binary mixture convection. Phys. Rev. Lett. 68, 301–304 (1992)

    Article  Google Scholar 

  8. Riecke, H.: Solitary wave under the influence of a long-wave mode. Phys. D 92(1–2), 69–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dewel, G., Metens, S., Hilali, M.F., Borckmans, P., Price, C.B.: Resonant patterns through coupling with a zero mode. Phys. Rev. Lett. 74, 4647–4650 (1995)

    Article  Google Scholar 

  10. Komarova, N.L., Newell, A.C.: Nonlinear dynamics of sand banks and sand waves. J. Fluid Mech. 415, 285–321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coullet, P., Fauve, S.: Propagative phase dynamics for systems with Galilean invariance. Phys. Rev. Lett. 55, 2857–2859 (1985)

    Article  Google Scholar 

  12. Doelman, A., Gardner, R.A., Jones, C.K.R.T.: Instability of quasiperiodic solution in Ginzburg–Landau equation. Proc. R. Soc. Edinb. 125A, 501–517 (1995)

    Article  MATH  Google Scholar 

  13. Norbury, J., Wei, J., Winter, M.: Existence and stability of singular pattern in a Ginzburg–Landau equation coupled by a mean field. Nonlinearity 15, 2077–2096 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, Montecatibi Terme. Lecture Notes in Mathematics, vol. 1609. Springer (1994)

  15. Fenichel, N.: Geometrical singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robinson, C.: Sustained resonance for a nonlinear system with slowly-varying coefficients. SIAM J. Math. Anal. 14, 847–860 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  18. Doelman, A., Gardner, R.A., Kaper, T.J.: Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J. 50, 443–507 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Supported by the National Natural Science Foundations of China and Fujian Province (Nos. 11771082, 11401229, 2015J01004), New Century Excellent Talents in Fujian Province, and the Nonlinear Analysis Innovation Team (IRTL 1206) funded by FJNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhe Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, M., Shen, J. & Zhou, Z. Traveling Fronts of a Real Supercritical Ginzburg–Landau Equation Coupled by a Slow Diffusion. Qual. Theory Dyn. Syst. 17, 29–48 (2018). https://doi.org/10.1007/s12346-017-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0264-x

Keywords

Navigation