Skip to main content
Log in

A New KAM Iteration with Nearly Infinitely Small Steps in Reversible Systems of Polynomial Character

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we prove the persistence of invariant tori of analytic reversible systems under Brjuno–Rüssmann’s non-resonant condition by an improved KAM iteration, but the frequency may undergo some drift. Furthermore, if the frequency mapping has nonzero Brouwer’s topological degree, then the invariant torus with prescribed frequency can persist. In the proof we propose a new method of KAM iteration for reversible systems, containing an artificial parameter \(q, 0< q <1, \) which makes the steps of KAM iteration infinitely small in the speed of the function \(q^{n}\epsilon \) rather than super exponential function \(\epsilon ^{\lambda ^{n}}, 1<\lambda <2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Reversible systems. In: Nonlinear and Turbulent Processes in Physics, vol. 3 (Kiev, 1983), pp. 1161–1174. Harwood Academic Publishers, Chur (1984)

  2. Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in families of Dynamical Systems, Order Amidst Chaos, Lecture Notes in Mathematics, vol. 1645. Springer, Berlin (1996)

  3. Broer, H.W., Huitema, G.B.: Unfoldings of quasi-periodic tori in reversible systems. J. Dyn. Differ. Equ. 7, 191–212 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broer, H.W., Hoo, J., Naudot, V.: Normal linear stability of quasi-periodic tori. J. Differ. Equ. 232, 355–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broer, H.W., Ciocci, M.C., Hanßmann, H., Vanderbauwhede, A.: Quasi-periodic stability of normally resonant tori. Phys. D 238, 309–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, B.: On lower diemnsional invariant tori in reversible systems. J. Differ. Equ. 176, 158–194 (2001)

    Article  MATH  Google Scholar 

  7. Pöschel, J.: KAM à la R. Regul. Chaotic Dyn. 16, 17–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Parasyuk, I.O.: Conservation of quasi-periodic motion in reversible multifrequency systems. Dokl. Akad. Nauk Ukrain. SSR. Ser. A 9, 19–22 (1982)

    MATH  Google Scholar 

  9. Popov, G.: KAM theorem for Gevrey Hamiltonians. Ergod. Theory Dynam. Syst. 24, 1753–1786 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6, 119–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rüssmann, H.: KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete Contin. Dyn. Syst. Ser. S 3, 683–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sevryuk, M.B.: Reversible Systems, Lecture Notes in Mathematics, vol. 1211. Springer, Berlin (1986)

  13. Sevryuk, M.B.: Invariant m-dimensional tori of reversible systems with phase space of dimension greater than 2m. J. Soviet Math. 51, 2374–2386 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sevryuk, M.B.: Lower-dimensional tori in reversible systems. Chaos 1, 160–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sevryuk, M.B.: The iteration-approximation decoupling in the reversible KAM theory. Chaos 5, 552–565 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sevryuk, M.B.: KAM stable Hamiltonians. J. Dyna. Control Syst. 1, 351–366 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sevryuk, M.B.: The reversible context 2 in KAM theory: the first steps. Regul. Chaotic Dyn. 16, 24–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sevryuk, M.B.: KAM theory for lower dimensional tori within the reversible context 2. Mosc. Math. J. 12, 435–455 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Wagener, F.: A note on Gevrey regular KAM theory and the inverse approximation lemma. Dyn. Syst. 18, 159–163 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wei, B.: Perturbations of lower dimensional tori in the resonant zone for reversible systems. J. Math. Anal. Appl. 253, 558–577 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X., Xu, J.: Gevery smoothness of invariant tori for analytic reversible systems under Rüssmann’s non-degeneracy condition. Discrete Contin. Dyn. Syst. Ser. A 25, 701–718 (2009)

    Article  MATH  Google Scholar 

  22. Wang, X., Xu, J., Zhang, D.: Persistence of lower dimensional elliptic invariant tori for a class of nearly integrable reversible systems. Discrete Contin. Dyn. Syst. Ser. B 14, 1237–1249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, X., Zhang, D., Xu, J.: Persistence of lower dimensional tori for a class of nearly integrable reversible systems. Acta Appl. Math. 115, 193–207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Xu, J., Zhang, D.: Degenerate lower dimensional tori in reversible systems. J. Math. Anal. Appl. 387, 776–790 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, X., Xu, J., Zhang, D.: On the persistence of degenerate lower dimensional tori in reversible systems. Ergod. Theory Dyn. Syst. 35, 2311–2333 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, J., You, J., Qiu, Q.: Invariant tori of nearly integrable Hamiltonian systems with degeneracy. M. Z. 226, 375–386 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, J.: Normal form of reversible systems and persistence of lower dimensional tori under weaker non-resonance conditions. SIAM J. Math. Anal. 36, 233–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., You, J.: Gevrey smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann’s non-degeneracy condition. J. Differ. Equ. 235, 609–622 (2007)

    Article  MATH  Google Scholar 

  29. Zhang, D., Xu, J.: On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann’s non-degeneracy condition. Discrete Contin. Dyn. Syst. Ser. A 16, 635–655 (2006)

    Article  MATH  Google Scholar 

  30. Zhang, D., Xu, J.: Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Rüssmann’s non-degeneracy condition. J. Math. Anal. Appl. 322, 293–312 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfeng Zhang.

Additional information

The work was supported by the National Natural Science Foundation of China (11001048) (11371090) (11501234).

Appendix

Appendix

In this section we formulate some lemmas which have been used in the previous section.

Lemma 2.4

Let \(s_{+}=s-\sigma , r_{+}=\eta r,\) and

$$\begin{aligned} \partial _{\hat{\omega }}h(x)=\sum _{k}i\langle k, \hat{\omega }\rangle h_{k}e^{i\langle k, x\rangle }. \end{aligned}$$

Suppose that \(\Vert h\Vert _{s,r}\le 2\Lambda (\tau )\sigma \alpha ^{-1}\epsilon , \) \(|\hat{\omega }|_{s_{+},r_{+}}\le a\epsilon ,\) where \(\epsilon <\frac{b^{2}\alpha ^{2} }{4\Lambda ^{2}(\tau )}.\) Then we have

$$\begin{aligned} \Vert \partial _{\hat{\omega }}h(x)\Vert _{s_{+}, r_{+}}\le ab\epsilon . \end{aligned}$$

Proof

$$\begin{aligned} \Vert \partial _{\hat{\omega }}h(x)\Vert _{s_{+}, r_{+}}= & {} \sum _{k}|\langle k,\hat{\omega }\rangle |\cdot \Vert h_{k}\Vert e^{|k|s_{+}}\\\le & {} \sum _{k}|\langle k,\hat{\omega }\rangle | \cdot \Vert h\Vert _{s,r}e^{-|k|s}e^{|k|s_{+}}\\\le & {} |\hat{\omega }|_{s_{+},r_{+}}\Vert h\Vert _{s,r}\sum _{k}|k|e^{-|k|(s-s_{+})}\\\le & {} 2a \epsilon \Lambda (\tau )\alpha ^{-1}\epsilon ^{\frac{1}{2}}=ab\epsilon . \end{aligned}$$

Lemma 2.5

Let \(s_{+}=s-\sigma , r_{+}=\eta r,\) and

$$\begin{aligned} \partial _{\hat{\omega }+f_{+}^{1}}g(x)=\sum _{k}i\langle k, \hat{\omega }+f^{1}_{+}\rangle g_{k}e^{i\langle k,x\rangle }. \end{aligned}$$

Suppose that \(\Vert g(x)\Vert _{s,r}\le 2\Lambda (\tau )\sigma \alpha ^{-1}\epsilon , \) \(\Vert f^{1}_{+}\Vert _{s_{+},r_{+}}\le 2((1-a)+b+ab)\epsilon , \) \(|\hat{\omega }|_{s_{+},r_{+}}\le a\epsilon ,\) where \(\epsilon <\frac{b^{2}\alpha ^{2} }{4\Lambda ^{2}(\tau )}.\) Then we have

$$\begin{aligned} \Vert \partial _{\hat{\omega }+f_{+}^{1}}g(x)\Vert _{s_{+},r_{+}}\le 3((1-a)+b+ab)\epsilon . \end{aligned}$$

Proof

$$\begin{aligned} \Vert \partial _{\hat{\omega }+f_{+}^{1}}g(x)\Vert _{s_{+},r_{+}}= & {} \sum _{k} |\langle k, \hat{\omega }+f^{1}_{+}\rangle |\cdot \Vert g_{k}\Vert e^{|k|s_{+}}\\\le & {} \sum _{k}|\langle k, \hat{\omega }+f^{1}_{+}\rangle |\cdot \Vert g\Vert _{s,r}e^{-|k|s}e^{|k|s_{+}}\\\le & {} (|\hat{\omega }|_{s_{+},r_{+}}+\Vert f^{1}_{+}\Vert _{s_{+},r_{+}})\Vert g\Vert _{s,r}\sum _{k}|k|e^{-|k|(s-s_{+})} \\\le & {} 3((1-a)+b+ab)\epsilon . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Xu, J. & Wang, X. A New KAM Iteration with Nearly Infinitely Small Steps in Reversible Systems of Polynomial Character. Qual. Theory Dyn. Syst. 17, 271–289 (2018). https://doi.org/10.1007/s12346-017-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-017-0229-0

Keywords

Mathematics Subject Classification

Navigation