Skip to main content
Log in

Lattice Burnside rings

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

Given a finite group G and a finite G-lattice \({{\mathscr {L}}}\), we introduce the concept of lattice Burnside ring associated to a family of nonempty sublattices \({{\mathscr {L}}}_H\) of \({{\mathscr {L}}}\) for \(H\le G\). The slice Burnside ring introduced by Bouc is isomorphic to a lattice Burnside ring. Any lattice Burnside ring is an extension of the ordinary Burnside ring and is isomorphic to an abstract Burnside ring. The ring structure of a lattice Burnside ring is explored on the basis of the fundamental theorem for abstract Burnside rings. We explore the unit group, the primitive idempotents, and connected components of the prime spectrum of a lattice Burnside ring. There are certain abstract Burnside rings called partial lattice Burnside rings. Any partial lattice Burnside ring consists of elements of a lattice Burnside ring. The section Burnside ring introduced by Bouc, which is a subring of the slice Burnside ring, is isomorphic to a partial lattice Burnside ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barker, L.: Fibred permutation sets and the idempotents and units of monomial Burnside rings. J. Algebra 281, 535–566 (2004)

    Article  MathSciNet  Google Scholar 

  2. Birkhoff, G.: Lattice theory, 3rd edn. American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society, Providence (1967)

  3. Boltje, R.: A general theory of canonical induction formulae. J. Algebra 206, 293–343 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bouc, S.: The \(p\)-blocks of the Mackey algebra. Algebr. Represent. Theory 6, 515–543 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bouc, S.: The slice Burnside ring and the section Burnside ring of a finite group. Compos. Math. 148, 868–906 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bourbaki, N.: Elements of mathematics. Commutative algebra. Translated from the French. Hermann, Paris; Addison-Wesley Publishing Co., Reading (1972)

  7. Curtis, C.W., Reiner, I.: Methods of Representation Theory, vols. 1, 2. Wiley-Interscience, New York (1981, 1987)

  8. Dress, A.: A characterisation of solvable groups. Math. Z. 110, 213–217 (1969)

    Article  MathSciNet  Google Scholar 

  9. Dress, A.: The ring of monomial representations I. Structure theory. J. Algebra 18, 137–157 (1971)

    Article  MathSciNet  Google Scholar 

  10. Gluck, D.: Idempotent formula for the Burnside algebra with applications to the \(p\)-subgroup simplicial complex. Ill. J. Math. 25, 63–67 (1981)

    Article  MathSciNet  Google Scholar 

  11. Jacobson, E.T.: The Brauer ring of a field. Ill. J. Math. 30, 479–510 (1986)

    Article  MathSciNet  Google Scholar 

  12. Matsuda, T.: On the unit groups of Burnside rings. Jpn. J. Math. (N.S.) 8, 71–93 (1982)

    Article  MathSciNet  Google Scholar 

  13. Nakaoka, H.: Structure of the Brauer ring of a field extension. Ill. J. Math. 52, 261–277 (2008)

    Article  MathSciNet  Google Scholar 

  14. Oda, F., Yoshida, T.: Crossed Burnside rings I. The fundamental theorem. J. Algebra 236, 29–79 (2001)

    Article  MathSciNet  Google Scholar 

  15. Suzuki, M.: Group Theory I, II. Springer, New York (1982, 1986)

  16. Takegahara, Y.: Induction formulae for Mackey functors with applications to representations of the twisted quantum double of a finite group. J. Algebra 410, 85–147 (2014)

    Article  MathSciNet  Google Scholar 

  17. Waterhouse, W.C.: Introduction to affine group schemes. Graduate Texts in Mathematics, vol. 66. Springer, New York (1979)

  18. Yoshida, T.: Idempotents of Burnside rings and Dress induction theorem. J. Algebra 80, 90–105 (1983)

    Article  MathSciNet  Google Scholar 

  19. Yoshida, T.: On the unit groups of Burnside rings. J. Math. Soc. Jpn. 42, 31–64 (1990)

    Article  MathSciNet  Google Scholar 

  20. Yoshida, T.: The generalized Burnside ring of a finite group. Hokkaido Math. J. 19, 509–574 (1990)

    Article  MathSciNet  Google Scholar 

  21. Yoshida, T., Oda, F., Takegahara, Y.: Axiomatic theory of Burnside rings. (I). J. Algebra 505, 339–382 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugen Takegahara.

Additional information

Presented by F. Wehrung.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant Number JP19K03436 and JP19K03457.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, F., Takegahara, Y. & Yoshida, T. Lattice Burnside rings. Algebra Univers. 81, 53 (2020). https://doi.org/10.1007/s00012-020-00687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-020-00687-1

Keywords

Mathematics Subject Classification

Navigation